Do you want to publish a course? Click here

Origin of Ferroelectricity in Hafnia from Epitaxial Strain

112   0   0.0 ( 0 )
 Added by Aldo Raeliarijaona
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferroelectric hafnia is being explored for next generation electronics due to its robust ferroelectricity in nanoscale samples and its compatibility with silicon. However, its ferroelectricity is not understood. Other ferroelectrics usually lose their ferroelectricity for nanoscopic samples and thin films, and the hafnia ground state is non-polar baddeleyite. Here we study hafnia with density functional theory (DFT) under epitaxial strain, and find that strain not only stabilizes the ferroelectric phases, but also leads to unstable modes and a downhill path in energy from the high temperature tetragonal structure. We find that under tensile epitaxial strain $eta$ the tetragonal phase will distort to one of the two ferroelectric phases: for $eta > 1.5$%, the $Gamma^{-}_{5}$ mode is unstable and leads to oII , and at $eta > 3.75$% coupling between this mode and the zone boundary M1 mode leads to oI. Furthermore, under compressive epitaxial strain $eta < 0.55$% the ferroelectric oI is most stable, even more stable than baddeleyite.



rate research

Read More

In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO$_2$. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics were achieved. The thermal trap energy of 1.25 eV in HfO$_2$ was determined based on the charge transport experiments.
Room temperature ferroelectricity is observed in lattice-matched ~18% ScAlN/GaN heterostructures grown by molecular beam epitaxy on single-crystal GaN substrates. The epitaxial films have smooth surface morphologies and high crystallinity. Pulsed current-voltage measurements confirm stable and repeatable polarization switching in such ferroelectric/semiconductor structures at several measurement conditions, and in multiple samples. The measured coercive field values are Ec~0.7 MV/cm at room temperature, with remnant polarization Pr~10 {mu}C/cm2 for ~100 nm thick ScAlN layers. These values are substantially lower than comparable ScAlN control layers deposited by sputtering. Importantly, the coercive field of MBE ScAlN is smaller than the critical breakdown field of GaN, offering the potential for low voltage ferroelectric switching. The low coercive field ferroelectricity of ScAlN on GaN heralds the possibility of new forms of electronic and photonic devices with epitaxially integrated ferroelectric/semiconductor heterostructures that take advantage of the GaN electronic and photonic semiconductor platform, where the underlying semiconductors themselves exhibit spontaneous and piezoelectric polarization.
We studied the ferroelectric and ferromagnetic properties of compressive strained and unstrained BiMnO3 thin films grown by rf-magnetron sputtering. BiMnO3 samples exhibit a 2D cube-on-cube growth mode and a pseudo-cubic struc-ture up to a thickness of 15 nm and of 25 nm when deposited on (001) SrTiO3 and (110) DyScO3, respectively. Above these thicknesses we observe a switching to a 3D island growth and a simultaneous structural change to a monoclinic structure characterized by a (00l) orientation of the monoclinic unit cell. While ferromagnetism is observed below Tc = 100 K for all samples, signatures of room temperature ferroelectricity were found only in the pseudo-cubic ultra-thin films, indicating a correlation between electronic and structural orders.
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180{deg} ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.
Magnetic ferroelectric has been found in a wide range of spiral magnets. However, these materials all suffer from low critical temperatures, which are usually below 40 K, due to strong spin frustration. Recently, CuO has been found to be multiferroic at much higher ordering temperature ($sim$ 230K). To clarify the origin of the high ordering temperature in CuO, we investigate the structural, electronic and magnetic properties of CuO via first-principles methods. We find that CuO has very special nearly commensurate spiral magnetic structure, which is stabilized via the Dzyaloshinskii-Moriya interaction. The spin frustration in CuO is relatively weak, which is one of the main reasons that the compound have high ordering temperature. We propose that high $T_c$ magnetic ferroelectric materials can be found in double sublattices of magnetic structures similar to that of CuO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا