Do you want to publish a course? Click here

Estimating the contribution of foreground halos to the FRB 180924 dispersion measure

514   0   0.0 ( 0 )
 Added by Sunil Simha
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast Radio Burst (FRB) dispersion measures (DMs) record the presence of ionized baryons that are otherwise invisible to other techniques enabling resolution of the matter distribution in the cosmic web. In this work, we aim to estimate the contribution to FRB 180924 DM from foreground galactic halos. Localized by ASKAP to a massive galaxy, this sightline is notable for an estimated cosmic web contribution to the DM ($rm DM_{cosmic} = 220~pc~cm^{-3}$), which is less than the average value at the host redshift ($rm z = 0.3216$) estimated from the Macquart relation ($280~rm pc~cm^{-3}$). In the favored models of the cosmic web, this suggests few intersections with foreground halos at small impact parameters ($lesssim 100$ kpc). To test this hypothesis, we carried out spectroscopic observations of the field galaxies within $sim$1 of the sightline with VLT/MUSE and Keck/LRIS. Furthermore, we developed a probabilistic methodology that leverages photometric redshifts derived from wide-field DES and WISE imaging. We conclude that there is no galactic halo that closely intersects the sightline and also that the net DM contribution from halos, $rm DM_{halos}< 45~pc~cm^{-3}$ (95 % c.l.). This value is lower than the $rm DM_{halos}$ estimated from an average sightline ($121~rm pc~cm^{-3}$) using the Planck $Lambda CDM$ model and the Aemulus halo mass function and reasonably explains its low $rm DM_{cosmic}$ value. We conclude that FRB 180924 represents the predicted majority of sightlines in the universe with no proximate foreground galactic halos. Our framework lays the foundation for a comprehensive analysis of FRB fields in the near future.



rate research

Read More

The overwhelming foreground contamination is one of the primary impediments to probing the Epoch of Reionization (EoR) through measuring the redshifted 21 cm signal. Among various foreground components, radio halos are less studied and their impacts on the EoR observations are still poorly understood. In this work, we employ the Press-Schechter formalism, merger-induced turbulent re-acceleration model, and the latest SKA1-Low layout configuration to simulate the SKA observed images of radio halos. We calculate the one-dimensional power spectra from simulated images and find that radio halos can be about $10^4$, $10^3$ and $10^{2.5}$ times more luminous than the EoR signal on scales of $0.1,text{Mpc}^{-1} < k < 2,text{Mpc}^{-1}$ in the 120-128, 154-162, and 192-200 MHz bands, respectively. By examining the two-dimensional power spectra inside properly defined EoR windows, we find that the power leaked by radio halos can still be significant, as the power ratios of radio halos to the EoR signal on scales of $0.5,text{Mpc}^{-1} lesssim k lesssim 1,text{Mpc}^{-1}$ can be up to about 230-800%, 18-95%, and 7-40% in the three bands, when the 68% uncertainties caused by the variation of the number density of bright radio halos are considered. Furthermore, we find that radio halos located inside the far side-lobes of the station beam can also impose strong contamination within the EoR window. In conclusion, we argue that radio halos are severe foreground sources and need serious treatments in future EoR experiments.
We investigate the dispersion measure(DM) and scattering of FRBs by the intergalactic-medium(IGM), foreground and host halos, using cosmological hydrodynamical simulation. We find that the median DM caused by foreground halos is around 30% of that caused by the IGM, but has a much larger variance. The DM induced by hosts deviates from a log-normal distribution, but exhibits an extended distribution in the range of $1-3000 {rm{pc, cm^{-3}}}$ with a median value $sim 100 {rm{pc, cm^{-3}}}$. Then we produce mock FRB sources, assuming a uniform distribution in the range $zsim 0-0.82$, to consider the propagation effect of IGM, foreground and host halos on FRB signals simultaneously. The DM distribution of mock sources agrees well with the observation. The fitted DM-redshift relation of the mock sources can provide a rough estimation of the redshifts of observed events with errors $delta z lesssim 0.15$. The distribution of mock sources in the DM-scattering time($tau$) space can also match the observation, assuming a Kolmogorov turbulence model with the inner and outer scale is 1000 km to 1 AU, and 0.2-10 pc respectively. Finally, we estimate the relative importance of these medium on DM and $tau$ in our models. The IGM and host halos are the primary and secondary sources to the extragalactic DM, $rm{DM_{exg}}$. Meanwhile, the contribution from foreground halos increases as $rm{DM_{exg}}$ increases. The host and foreground halos may be the most important medium for scattering. Statistically, the latter may dominate the scattering of events with $rm{DM_{exg}} gtrsim 200 {rm{pc, cm^{-3}}}$.
The overwhelming foreground contamination hinders the accurate detection of the 21-cm signal of neutral hydrogen during the Epoch of Reionization (EoR). Among various foreground components, the Galactic free-free emission is less studied, so that its impact on the EoR observations remains unclear. In this work, we employ the observed $rm Halpha$ intensity map with the correction of dust absorption and scattering, the Simfast21 software, and the latest SKA1-Low layout configuration to simulate the SKA observed images of Galactic free-free emission and the EoR signal. By calculating the one-dimensional power spectra from the simulated image cubes, we find that the Galactic free-free emission is about $10^{3.5}$-$10^{2.0}$, $10^{3.0}$-$10^{1.3}$, and $10^{2.5}$-$10^{1.0}$ times more luminous than the EoR signal on scales of $0.1~rm Mpc^{-1} < k < 2~rm Mpc^{-1}$ in the $116$-$124$, $146$-$154$, and $186$-$194$ ${rm MHz}$ frequency bands. We further analyse the two-dimensional power spectra inside the properly defined EoR window and find that the leaked Galactic free-free emission can still cause non-negligible contamination, as the ratios of its power (amplitude squared) to the EoR signal power can reach about $200%$, $60%$, and $15%$ on scales of $1.2~rm Mpc^{-1}$ in three frequency bands, respectively. Therefore, we conclude that the Galactic free-free emission, as a severe contaminating foreground component, needs to be carefully treated in the forthcoming deep EoR observations.
We provide a new observational test for a key prediction of the Lambda CDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing seven galaxy clusters, spanning the redshift range $0.13 < z_c < 0.45$ and caustic mass range $0.4-1.5$ $10^{15} h_{0.73}^{-1}$ M$_{odot}$, with an average of 293 spectroscopically-confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between ~0.2 and ~0.7, we find a ~1 $sigma$ agreement with Lambda CDM expectations based on the Millennium simulations I and II. At low mass ratios, $lesssim 0.2$, our derived contribution is underestimated since the detection efficiency decreases at low masses, $sim 2 times 10^{14}$ $h_{0.73}^{-1}$ M$_{odot}$. At large mass ratios, $gtrsim 0.7$, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.
The characterization of the dust polarization foreground to the Cosmic Microwave Background (CMB) is a necessary step towards the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of polarized dust emission on the sphere, similarly to what is done for the CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modelled as a superposition of a mean uniform field and a random component with a power-law power spectrum of exponent $alpha_{rm M}$. The model parameters are constrained to fit the power spectra of dust polarization EE, BB and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for $alpha_{rm M} = -2.5$. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multi-frequency simulations including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize component separation methods and to quantify the confidence with which the dust and CMB B-modes can be separated in present and future experiments. We also provide an astrophysical perspective on our modeling of the dust polarization spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا