Do you want to publish a course? Click here

The Contribution of Halos with Different Mass Ratios to the Overall Growth of Cluster-Sized Halos

140   0   0.0 ( 0 )
 Added by Doron Lemze
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a new observational test for a key prediction of the Lambda CDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing seven galaxy clusters, spanning the redshift range $0.13 < z_c < 0.45$ and caustic mass range $0.4-1.5$ $10^{15} h_{0.73}^{-1}$ M$_{odot}$, with an average of 293 spectroscopically-confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between ~0.2 and ~0.7, we find a ~1 $sigma$ agreement with Lambda CDM expectations based on the Millennium simulations I and II. At low mass ratios, $lesssim 0.2$, our derived contribution is underestimated since the detection efficiency decreases at low masses, $sim 2 times 10^{14}$ $h_{0.73}^{-1}$ M$_{odot}$. At large mass ratios, $gtrsim 0.7$, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.



rate research

Read More

The overwhelming foreground contamination is one of the primary impediments to probing the Epoch of Reionization (EoR) through measuring the redshifted 21 cm signal. Among various foreground components, radio halos are less studied and their impacts on the EoR observations are still poorly understood. In this work, we employ the Press-Schechter formalism, merger-induced turbulent re-acceleration model, and the latest SKA1-Low layout configuration to simulate the SKA observed images of radio halos. We calculate the one-dimensional power spectra from simulated images and find that radio halos can be about $10^4$, $10^3$ and $10^{2.5}$ times more luminous than the EoR signal on scales of $0.1,text{Mpc}^{-1} < k < 2,text{Mpc}^{-1}$ in the 120-128, 154-162, and 192-200 MHz bands, respectively. By examining the two-dimensional power spectra inside properly defined EoR windows, we find that the power leaked by radio halos can still be significant, as the power ratios of radio halos to the EoR signal on scales of $0.5,text{Mpc}^{-1} lesssim k lesssim 1,text{Mpc}^{-1}$ can be up to about 230-800%, 18-95%, and 7-40% in the three bands, when the 68% uncertainties caused by the variation of the number density of bright radio halos are considered. Furthermore, we find that radio halos located inside the far side-lobes of the station beam can also impose strong contamination within the EoR window. In conclusion, we argue that radio halos are severe foreground sources and need serious treatments in future EoR experiments.
Fast Radio Burst (FRB) dispersion measures (DMs) record the presence of ionized baryons that are otherwise invisible to other techniques enabling resolution of the matter distribution in the cosmic web. In this work, we aim to estimate the contribution to FRB 180924 DM from foreground galactic halos. Localized by ASKAP to a massive galaxy, this sightline is notable for an estimated cosmic web contribution to the DM ($rm DM_{cosmic} = 220~pc~cm^{-3}$), which is less than the average value at the host redshift ($rm z = 0.3216$) estimated from the Macquart relation ($280~rm pc~cm^{-3}$). In the favored models of the cosmic web, this suggests few intersections with foreground halos at small impact parameters ($lesssim 100$ kpc). To test this hypothesis, we carried out spectroscopic observations of the field galaxies within $sim$1 of the sightline with VLT/MUSE and Keck/LRIS. Furthermore, we developed a probabilistic methodology that leverages photometric redshifts derived from wide-field DES and WISE imaging. We conclude that there is no galactic halo that closely intersects the sightline and also that the net DM contribution from halos, $rm DM_{halos}< 45~pc~cm^{-3}$ (95 % c.l.). This value is lower than the $rm DM_{halos}$ estimated from an average sightline ($121~rm pc~cm^{-3}$) using the Planck $Lambda CDM$ model and the Aemulus halo mass function and reasonably explains its low $rm DM_{cosmic}$ value. We conclude that FRB 180924 represents the predicted majority of sightlines in the universe with no proximate foreground galactic halos. Our framework lays the foundation for a comprehensive analysis of FRB fields in the near future.
140 - F. Govoni , M. Murgia , H. Xu 2013
Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos has been shown to be extremely important to constrain the properties of intracluster magnetic fields. However, detecting this polarized signal is a very hard task with the current radio facilities.We investigate whether future radio observatories, such as the Square Kilometer Array (SKA) and its precursors and pathfinders, will be able to detect the polarized emission of radio halos in galaxy clusters.On the basis of cosmological magnetohydrodynamical simulations with initial magnetic fields injected by active galactic nuclei, we predict the expected radio halo polarized signal at 1.4 GHz. We compare these expectations with the limits of current radio facilities and explore the potential of the forthcoming radio interferometers to investigate intracluster magnetic fields through the detection of polarized emission from radio halos.The resolution and sensitivity values that are expected to be obtained in future sky surveys performed at 1.4 GHz using the SKA precursors and pathfinders (like APERTIF and ASKAP) are very promising for the detection of the polarized emission of the most powerful (L1.4GHz>10e25 Watt/Hz) radio halos. Furthermore, the JVLA have the potential to already detect polarized emission from strong radio halos, at a relatively low resolution.However, the possibility of detecting the polarized signal in fainter radio halos (L1.4GHz~10e24 Watt/Hz) at high resolution requires a sensitivity reachable only with SKA.
Dark matter halos of sub-solar mass are the first bound objects to form in cold dark matter theories. In this article, I discuss the present understanding of microhalos, their role in structure formation, and the implications of their potential presence, in the interpretation of dark matter experiments.
191 - Aaron D. Ludlow 2013
We use the Millennium Simulation series to investigate the mass and redshift dependence of the concentration of equilibrium cold dark matter (CDM) halos. We extend earlier work on the relation between halo mass profiles and assembly histories to show how the latter may be used to predict concentrations for halos of all masses and at any redshift. Our results clarify the link between concentration and the ``collapse redshift of a halo as well as why concentration depends on mass and redshift solely through the dimensionless ``peak height mass parameter, $ u(M,z)=delta_{rm crit}(z)/sigma(M,z)$. We combine these results with analytic mass accretion histories to extrapolate the $c(M,z)$ relations to mass regimes difficult to reach through direct simulation. Our model predicts that, at given $z$, $c(M)$ should deviate systematically from a simple power law at high masses, where concentrations approach a constant value, and at low masses, where concentrations are substantially lower than expected from extrapolating published empirical fits. This correction may reduce the expected self-annihilation boost factor from substructure by about one order of magnitude. The model also reproduces the $c(M,z)$ dependence on cosmological parameters reported in earlier work, and thus provides a simple and robust account of the relation between cosmology and the mass-concentration-redshift relation of CDM halos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا