Do you want to publish a course? Click here

Flexible Clustered Federated Learning for Client-Level Data Distribution Shift

159   0   0.0 ( 0 )
 Added by Moming Duan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID, imbalanced (statistical heterogeneity) and distribution shifted training data of FL is distributed in the federated network, which will increase the divergences between the local models and the global model, further degrading performance. In this paper, we propose a flexible clustered federated learning (CFL) framework named FlexCFL, in which we 1) group the training of clients based on the similarities between the clients optimization directions for lower training divergence; 2) implement an efficient newcomer device cold start mechanism for framework scalability and practicality; 3) flexibly migrate clients to meet the challenge of client-level data distribution shift. FlexCFL can achieve improvements by dividing joint optimization into groups of sub-optimization and can strike a balance between accuracy and communication efficiency in the distribution shift environment. The convergence and complexity are analyzed to demonstrate the efficiency of FlexCFL. We also evaluate FlexCFL on several open datasets and made comparisons with related CFL frameworks. The results show that FlexCFL can significantly improve absolute test accuracy by +10.6% on FEMNIST compared to FedAvg, +3.5% on FashionMNIST compared to FedProx, +8.4% on MNIST compared to FeSEM. The experiment results show that FlexCFL is also communication efficient in the distribution shift environment.



rate research

Read More

151 - Moming Duan , Duo Liu , Xinyuan Ji 2020
Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID and imbalanced (statistical heterogeneity) training data of FL is distributed in the federated network, which will increase the divergences between the local models and global model, further degrading performance. In this paper, we propose a novel clustered federated learning (CFL) framework FedGroup, in which we 1) group the training of clients based on the similarities between the clients optimization directions for high training performance; 2) construct a new data-driven distance measure to improve the efficiency of the client clustering procedure. 3) implement a newcomer device cold start mechanism based on the auxiliary global model for framework scalability and practicality. FedGroup can achieve improvements by dividing joint optimization into groups of sub-optimization and can be combined with FL optimizer FedProx. The convergence and complexity are analyzed to demonstrate the efficiency of our proposed framework. We also evaluate FedGroup and FedGrouProx (combined with FedProx) on several open datasets and made comparisons with related CFL frameworks. The results show that FedGroup can significantly improve absolute test accuracy by +14.1% on FEMNIST compared to FedAvg. +3.4% on Sentiment140 compared to FedProx, +6.9% on MNIST compared to FeSEM.
Federated Learning (FL), arising as a novel secure learning paradigm, has received notable attention from the public. In each round of synchronous FL training, only a fraction of available clients are chosen to participate and the selection decision might have a significant effect on the training efficiency, as well as the final model performance. In this paper, we investigate the client selection problem under a volatile context, in which the local training of heterogeneous clients is likely to fail due to various kinds of reasons and in different levels of frequency. Intuitively, too much training failure might potentially reduce the training efficiency, while too much selection on clients with greater stability might introduce bias, and thereby result in degradation of the training effectiveness. To tackle this tradeoff, we in this paper formulate the client selection problem under joint consideration of effective participation and fairness. Further, we propose E3CS, a stochastic client selection scheme on the basis of an adversarial bandit solution, and we further corroborate its effectiveness by conducting real data-based experiments. According to the experimental results, our proposed selection scheme is able to achieve up to 2x faster convergence to a fixed model accuracy while maintaining the same level of final model accuracy, in comparison to the vanilla selection scheme in FL.
90 - Jing Xu , Sen Wang , Liwei Wang 2021
Federated Learning is a distributed machine learning approach which enables model training without data sharing. In this paper, we propose a new federated learning algorithm, Federated Averaging with Client-level Momentum (FedCM), to tackle problems of partial participation and client heterogeneity in real-world federated learning applications. FedCM aggregates global gradient information in previous communication rounds and modifies client gradient descent with a momentum-like term, which can effectively correct the bias and improve the stability of local SGD. We provide theoretical analysis to highlight the benefits of FedCM. We also perform extensive empirical studies and demonstrate that FedCM achieves superior performance in various tasks and is robust to different levels of client numbers, participation rate and client heterogeneity.
In this paper, we focus on facilitating differentially private quantized communication between the clients and server in federated learning (FL). Towards this end, we propose to have the clients send a textit{private quantized} version of only the textit{unit vector} along the change in their local parameters to the server, textit{completely throwing away the magnitude information}. We call this algorithm texttt{DP-NormFedAvg} and show that it has the same order-wise convergence rate as texttt{FedAvg} on smooth quasar-convex functions (an important class of non-convex functions for modeling optimization of deep neural networks), thereby establishing that discarding the magnitude information is not detrimental from an optimization point of view. We also introduce QTDL, a new differentially private quantization mechanism for unit-norm vectors, which we use in texttt{DP-NormFedAvg}. QTDL employs textit{discrete} noise having a Laplacian-like distribution on a textit{finite support} to provide privacy. We show that under a growth-condition assumption on the per-sample client losses, the extra per-coordinate communication cost in each round incurred due to privacy by our method is $mathcal{O}(1)$ with respect to the model dimension, which is an improvement over prior work. Finally, we show the efficacy of our proposed method with experiments on fully-connected neural networks trained on CIFAR-10 and Fashion-MNIST.
382 - Yu Zhang , Moming Duan , Duo Liu 2021
Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are that the model has high precision and fast convergence speed. However, this synchronous communication strategy has the risk that the central server waits too long for the devices, namely, the straggler effect which has a negative impact on some time-critical applications. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. Therefore, we combine the advantages of these two strategies to propose a clustered semi-asynchronous federated learning (CSAFL) framework. We evaluate CSAFL based on four imbalanced federated datasets in a non-IID setting and compare CSAFL to the baseline methods. The experimental results show that CSAFL significantly improves test accuracy by more than +5% on the four datasets compared to TA-FedAvg. In particular, CSAFL improves absolute test accuracy by +34.4% on non-IID FEMNIST compared to TA-FedAvg.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا