Do you want to publish a course? Click here

Theoretical analysis of a Polarized Two-Photon Michelson Interferometer with Broadband Chaotic Light

81   0   0.0 ( 0 )
 Added by Yu Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we study two-photon interference of broadband chaotic light in a Michelson interferometer with two-photon-absorption detector. The theoretical analysis is based on two-photon interference and Feynman path integral theory. The two-photon coherence matrix is introduced to calculate the second-order interference pattern with polarizations being taken into account. Our study shows that the polarization is another dimension, as well as time and space, to tune the interference pattern in the two-photon interference process. It can act as a switch to manipulate the interference process and open the gate to many new experimental schemes.



rate research

Read More

Differing from the traditional method of achieving subwavelength interference, we have demonstrated the two-photon subwavelength interference effect of broadband chaotic light in a polarization-selective Michelson interferometer with an ultrafast two-photon absorption detector the first time, which is achieved by manipulating two-photon probability amplitudes involved in the interference. In theory, the two-photon polarization coherence matrix and probability amplitudes matrix are combined to develop polarized two-photon interference terms, which explains the experimental results well. In order to make better use of this interferometer to produce the subwavelength effect, we also make a series of error analyses to find out the relationship between the visibility and the degree of polarization error. Our experimental and theoretical results are helpful to understand the two-photon subwavelength interference, which sheds light on the development of the two-photon interference theory of vector light field based on quantum mechanics. These experimental results may help to develop future optical interferometry, optical polarimetry, and subwavelength lithography.
It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.
We report on the experimental combination of three advanced interferometer techniques for gravitational wave detection, namely power-recycling, detuned signal-recycling and squeezed field injection. For the first time we experimentally prove the compatibility of especially the latter two. To achieve a broadband non-classical sensitivity improvement we applied a filter cavity for compensation of quadrature rotation. Signal to noise ratio was improved by up to 2.8 dB beyond the coherent states shot noise. The complete set-up was stably locked for arbitrary times and characterized by injected single-sideband modulation fields.
Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes with high mechanical Q-values at room temperature have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror for the Michelson interferometer part. In this new topology, both, power- and signal-recycling can be used even if the reflectance of the membrane is much lower than unity. In particular, signal-recycling is a useful tool because it does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure noise and the shot-noise of an oscillator position measurement and compare them with theoretical models of the thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of 125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central beam splitter of the interferometer and a membrane temperature of 1 K.
Two-photon interference of multimode two-photon pairs produced by an optical parametric oscillator has been observed for the first time with an unbalanced interferometer. The time correlation between the multimode two photons has a multi-peaked structure. This property of the multimode two-photon state induces two-photon interference depending on delay time. The nonclassicality of this interference is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا