Do you want to publish a course? Click here

Observing two-photon subwavelength interference of broadband chaotic light in polarization-selective Michelson interferometer

81   0   0.0 ( 0 )
 Added by Sheng Luo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Differing from the traditional method of achieving subwavelength interference, we have demonstrated the two-photon subwavelength interference effect of broadband chaotic light in a polarization-selective Michelson interferometer with an ultrafast two-photon absorption detector the first time, which is achieved by manipulating two-photon probability amplitudes involved in the interference. In theory, the two-photon polarization coherence matrix and probability amplitudes matrix are combined to develop polarized two-photon interference terms, which explains the experimental results well. In order to make better use of this interferometer to produce the subwavelength effect, we also make a series of error analyses to find out the relationship between the visibility and the degree of polarization error. Our experimental and theoretical results are helpful to understand the two-photon subwavelength interference, which sheds light on the development of the two-photon interference theory of vector light field based on quantum mechanics. These experimental results may help to develop future optical interferometry, optical polarimetry, and subwavelength lithography.

rate research

Read More

It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.
80 - Y. Zhou , S. Luo , J. Liu 2021
In this paper, we study two-photon interference of broadband chaotic light in a Michelson interferometer with two-photon-absorption detector. The theoretical analysis is based on two-photon interference and Feynman path integral theory. The two-photon coherence matrix is introduced to calculate the second-order interference pattern with polarizations being taken into account. Our study shows that the polarization is another dimension, as well as time and space, to tune the interference pattern in the two-photon interference process. It can act as a switch to manipulate the interference process and open the gate to many new experimental schemes.
Quantum nonlinear interferometers (QNIs) can measure the infrared physical quantities of a sample by detecting visible photons. A QNI with Michelson geometry based on the spontaneous parametric down-conversion in a second-order nonlinear crystal is studied systematically. A simplified theoretical model of the QNI is presented. The interference visibility, coherence length, equal-inclination interference, and equal-thickness interference for the QNI are demonstrated theoretically and experimentally. As an application example of the QNI, the refractive index and the angle between two surfaces of a BBO crystal are measured using equal-inclination interference and equal-thickness interference.
Two-photon interference of multimode two-photon pairs produced by an optical parametric oscillator has been observed for the first time with an unbalanced interferometer. The time correlation between the multimode two photons has a multi-peaked structure. This property of the multimode two-photon state induces two-photon interference depending on delay time. The nonclassicality of this interference is also discussed.
We study the interference structure of the second-order intensity correlation function for polarization-entangled two-photon light obtained from type-II collinear frequency-degenerate spontaneous parametric down-conversion (SPDC). The structure is visualised due to the spreading of the two-photon amplitude as two-photon light propagates through optical fibre with group-velocity dispersion (GVD). Because of the spreading, polarization-entangled Bell states can be obtained without any birefringence compensation at the output of the nonlinear crystal; instead, proper time selection of the intensity correlation function is required. A birefringent material inserted at the output of the nonlinear crystal (either reducing the initial o-e delay between the oppositely polarized twin photons or increasing this delay) leads to a more complicated interference structure of the correlation function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا