Do you want to publish a course? Click here

Observation of near EF Fermi-arc van Hove singularity with prominent coupling to phonon in a van der Waals coupled Weyl semimetal

158   0   0.0 ( 0 )
 Added by Yoshinori Okada
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A van der Waals coupled Weyl semimetal material NbIrTe4 is investigated by combining scanning tunneling microscopy/spectroscopy and first principles calculations. We observe a sharp peak in the tunneling conductance near the zero bias energy, and its origin is ascribed to a van Hove singularity associated with a Lifshitz transition of the topologically none trivial Fermi arc states. Furthermore, tunneling spectroscopy measurements show a surprisingly large signature of electron boson coupling, which presumably represents anomalously enhanced electron phonon coupling through the enhanced charge susceptibility. Our finding in van der Waals coupled material is particularly invaluable due to applicable exfoliation technology for searching exotic topological states by further manipulating near Fermi energy van Hove singularity in nanometer scale flakes and their devices.



rate research

Read More

Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of $e^2/h$ in macroscopic samples of Highly Oriented Pyrolytic Graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moire superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length $ell_B$, the Fermi wave length $lambda_F$ and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links between real materials properties and terms that can be cooked up on the model Hamiltonian level to realize different exotic phenomena. Our review aims to do precisely this: we first discuss, in a way accessible to the materials community, what ingredients need to be included in the hybrid quantum materials recipe, and second, we elaborate on the specific materials that would possess the necessary qualities. We will review the well-established procedures for realizing 2D topological superconductors, quantum spin-liquids and flat bands systems, emphasizing the connection between well-known model Hamiltonians and real compounds. We will use the most recent experimental results to illustrate the power of the designer approach.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Twisted graphene bilayers (TGBs) have low-energy van Hove singularities (VHSs) that are strongly localized around AA-stacked regions of the moire pattern. Therefore, they exhibit novel many-body electronic states, such as Mott-like insulator and unconventional superconductivity. Unfortunately, these strongly correlated states were only observed in magic angle TGBs with the twist angle theta~1.1{deg}, requiring a precisely tuned structure. Is it possible to realize exotic quantum phases in the TGBs not limited at the magic angle? Here we studied electronic properties of a TGB with theta~1.64{deg} and demonstrated that a VHS splits into two spin-polarized states flanking the Fermi energy when the VHS is close to the Fermi level. Such a result indicates that localized magnetic moments emerge in the AA-stacked regions of the TGB. Since the low-energy VHSs are quite easy to be reached in slightly TGBs, our result therefore provides a facile direction to realize novel quantum phases in graphene system.
Magnetic phase transitions often occur spontaneously at specific critical temperatures. The presence of more than one critical temperature (Tc) has been observed in several compounds where the coexistence of competing magnetic orders highlights the importance of phase separation driven by different factors such as pressure, temperature and chemical composition. However, it is unknown whether recently discovered two-dimensional (2D) van der Walls (vdW) magnetic materials show such intriguing phenomena that can result in rich phase diagrams with novel magnetic features to be explored. Here we show the existence of three magnetic phase transitions at different Tcs in 2D vdW magnet CrI3 revealed by a complementary suite of muon spin relaxation-rotation, superconducting quantum interference device magnetometry, and large-scale atomistic simulations including higher-order exchange interactions. We find that the traditionally identified Curie temperature of bulk CrI3 at 61 K does not correspond to the long-range order in the full volume (VM) of the crystal but rather a partial transition with less than 25% of VM being magnetically spin-ordered. This transition is composed of highly disordered domains with the easy-axis component of the magnetization Sz not being fully spin-polarized but disordered by in-plane components (Sx, Sy) over the entire layer. As the system cools down, two additional phase transitions at 50 K and 25 K drive the system to 80% and nearly 100% of the magnetically ordered volume, respectively, where the ferromagnetic ground state has a marked Sz character yet also displaying finite contributions of Sx and Sy to the total magnetization. Our results indicate that volume-wise competing electronic phases play an important role in the magnetic properties of CrI3 which set a much lower threshold temperature for exploitation in magnetic device-platforms than initially considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا