No Arabic abstract
Magnetic phase transitions often occur spontaneously at specific critical temperatures. The presence of more than one critical temperature (Tc) has been observed in several compounds where the coexistence of competing magnetic orders highlights the importance of phase separation driven by different factors such as pressure, temperature and chemical composition. However, it is unknown whether recently discovered two-dimensional (2D) van der Walls (vdW) magnetic materials show such intriguing phenomena that can result in rich phase diagrams with novel magnetic features to be explored. Here we show the existence of three magnetic phase transitions at different Tcs in 2D vdW magnet CrI3 revealed by a complementary suite of muon spin relaxation-rotation, superconducting quantum interference device magnetometry, and large-scale atomistic simulations including higher-order exchange interactions. We find that the traditionally identified Curie temperature of bulk CrI3 at 61 K does not correspond to the long-range order in the full volume (VM) of the crystal but rather a partial transition with less than 25% of VM being magnetically spin-ordered. This transition is composed of highly disordered domains with the easy-axis component of the magnetization Sz not being fully spin-polarized but disordered by in-plane components (Sx, Sy) over the entire layer. As the system cools down, two additional phase transitions at 50 K and 25 K drive the system to 80% and nearly 100% of the magnetically ordered volume, respectively, where the ferromagnetic ground state has a marked Sz character yet also displaying finite contributions of Sx and Sy to the total magnetization. Our results indicate that volume-wise competing electronic phases play an important role in the magnetic properties of CrI3 which set a much lower threshold temperature for exploitation in magnetic device-platforms than initially considered.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links between real materials properties and terms that can be cooked up on the model Hamiltonian level to realize different exotic phenomena. Our review aims to do precisely this: we first discuss, in a way accessible to the materials community, what ingredients need to be included in the hybrid quantum materials recipe, and second, we elaborate on the specific materials that would possess the necessary qualities. We will review the well-established procedures for realizing 2D topological superconductors, quantum spin-liquids and flat bands systems, emphasizing the connection between well-known model Hamiltonians and real compounds. We will use the most recent experimental results to illustrate the power of the designer approach.
Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of $e^2/h$ in macroscopic samples of Highly Oriented Pyrolytic Graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moire superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length $ell_B$, the Fermi wave length $lambda_F$ and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.
Manipulating quantum state via electrostatic gating has been intriguing for many model systems in nanoelectronics. When it comes to the question of controlling the electron spins, more specifically, the magnetism of a system, tuning with electric field has been proven to be elusive. Recently, magnetic layered semiconductors have attracted much attention due to their emerging new physical phenomena. However, challenges still remain in the demonstration of a gate controllable magnetism based on them. Here, we show that, via ionic gating, strong field effect can be observed in few-layered semiconducting Cr$_{2}$Ge$_{2}$Te$_{6}$ devices. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment re-balance in the spin-polarized band structure. Our findings of electric-field controlled magnetism in van der Waals magnets pave the way for potential applications in new generation magnetic memory storage, sensors, and spintronics.
The individual building blocks of van der Waals (vdW) heterostructures host fascinating physical phenomena, ranging from ballistic electron transport in graphene to striking optical properties of MoSe2 sheets. The presence of bonded and non-bonded cohesive interactions in a vdW heterostructure, promotes diversity in their structural arrangements, which in turn profoundly modulate the properties of their individual constituents. Here, we report on the presence of correlated structural disorder coexisting with the nearly perfect crystallographic order along the growth direction of epitaxial vdW heterostructures of Bi2Se3/graphene/SiC. Using the depth penetration of X-ray diffraction microscopy and scattering, we probed their crystal structure from atomic to mesoscopic length scales, to reveal that their structural diversity is underpinned by spatially correlated disorder states. The presence of the latter induces on a system, widely considered to behave as a collection of nearly independent 2-dimensional units, a pseudo-3-dimensional character, when subjected to epitaxial constraints and ordered substrate interactions. These findings shed new light on the nature of the vast structural landscape of vdW heterostructures and could enable new avenues in modulating their unique properties by correlated disorder.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.