No Arabic abstract
Adversarial attacks pose a substantial threat to computer vision system security, but the social media industry constantly faces another form of adversarial attack in which the hackers attempt to upload inappropriate images and fool the automated screening systems by adding artificial graphics patterns. In this paper, we formulate the defense against such attacks as an artificial graphics pattern segmentation problem. We evaluate the efficacy of several segmentation algorithms and, based on observation of their performance, propose a new method tailored to this specific problem. Extensive experiments show that the proposed method outperforms the baselines and has a promising generalization capability, which is the most crucial aspect in segmenting artificial graphics patterns.
Detecting manipulated images and videos is an important topic in digital media forensics. Most detection methods use binary classification to determine the probability of a query being manipulated. Another important topic is locating manipulated regions (i.e., performing segmentation), which are mostly created by three commonly used attacks: removal, copy-move, and splicing. We have designed a convolutional neural network that uses the multi-task learning approach to simultaneously detect manipulated images and videos and locate the manipulated regions for each query. Information gained by performing one task is shared with the other task and thereby enhance the performance of both tasks. A semi-supervised learning approach is used to improve the networks generability. The network includes an encoder and a Y-shaped decoder. Activation of the encoded features is used for the binary classification. The output of one branch of the decoder is used for segmenting the manipulated regions while that of the other branch is used for reconstructing the input, which helps improve overall performance. Experiments using the FaceForensics and FaceForensics++ databases demonstrated the networks effectiveness against facial reenactment attacks and face swapping attacks as well as its ability to deal with the mismatch condition for previously seen attacks. Moreover, fine-tuning using just a small amount of data enables the network to deal with unseen attacks.
When watching omnidirectional images (ODIs), subjects can access different viewports by moving their heads. Therefore, it is necessary to predict subjects head fixations on ODIs. Inspired by generative adversarial imitation learning (GAIL), this paper proposes a novel approach to predict saliency of head fixations on ODIs, named SalGAIL. First, we establish a dataset for attention on ODIs (AOI). In contrast to traditional datasets, our AOI dataset is large-scale, which contains the head fixations of 30 subjects viewing 600 ODIs. Next, we mine our AOI dataset and determine three findings: (1) The consistency of head fixations are consistent among subjects, and it grows alongside the increased subject number; (2) The head fixations exist with a front center bias (FCB); and (3) The magnitude of head movement is similar across subjects. According to these findings, our SalGAIL approach applies deep reinforcement learning (DRL) to predict the head fixations of one subject, in which GAIL learns the reward of DRL, rather than the traditional human-designed reward. Then, multi-stream DRL is developed to yield the head fixations of different subjects, and the saliency map of an ODI is generated via convoluting predicted head fixations. Finally, experiments validate the effectiveness of our approach in predicting saliency maps of ODIs, significantly better than 10 state-of-the-art approaches.
Food computing is playing an increasingly important role in human daily life, and has found tremendous applications in guiding human behavior towards smart food consumption and healthy lifestyle. An important task under the food-computing umbrella is retrieval, which is particularly helpful for health related applications, where we are interested in retrieving important information about food (e.g., ingredients, nutrition, etc.). In this paper, we investigate an open research task of cross-modal retrieval between cooking recipes and food images, and propose a novel framework Adversarial Cross-Modal Embedding (ACME) to resolve the cross-modal retrieval task in food domains. Specifically, the goal is to learn a common embedding feature space between the two modalities, in which our approach consists of several novel ideas: (i) learning by using a new triplet loss scheme together with an effective sampling strategy, (ii) imposing modality alignment using an adversarial learning strategy, and (iii) imposing cross-modal translation consistency such that the embedding of one modality is able to recover some important information of corresponding instances in the other modality. ACME achieves the state-of-the-art performance on the benchmark Recipe1M dataset, validating the efficacy of the proposed technique.
Despite its high prevalence, anemia is often undetected due to the invasiveness and cost of screening and diagnostic tests. Though some non-invasive approaches have been developed, they are less accurate than invasive methods, resulting in an unmet need for more accurate non-invasive methods. Here, we show that deep learning-based algorithms can detect anemia and quantify several related blood measurements using retinal fundus images both in isolation and in combination with basic metadata such as patient demographics. On a validation dataset of 11,388 patients from the UK Biobank, our algorithms achieved a mean absolute error of 0.63 g/dL (95% confidence interval (CI) 0.62-0.64) in quantifying hemoglobin concentration and an area under receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.86-0.89) in detecting anemia. This work shows the potential of automated non-invasive anemia screening based on fundus images, particularly in diabetic patients, who may have regular retinal imaging and are at increased risk of further morbidity and mortality from anemia.
Training deep learning based video classifiers for action recognition requires a large amount of labeled videos. The labeling process is labor-intensive and time-consuming. On the other hand, large amount of weakly-labeled images are uploaded to the Internet by users everyday. To harness the rich and highly diverse set of Web images, a scalable approach is to crawl these images to train deep learning based classifier, such as Convolutional Neural Networks (CNN). However, due to the domain shift problem, the performance of Web images trained deep classifiers tend to degrade when directly deployed to videos. One way to address this problem is to fine-tune the trained models on videos, but sufficient amount of annotated videos are still required. In this work, we propose a novel approach to transfer knowledge from image domain to video domain. The proposed method can adapt to the target domain (i.e. video data) with limited amount of training data. Our method maps the video frames into a low-dimensional feature space using the class-discriminative spatial attention map for CNNs. We design a novel Siamese EnergyNet structure to learn energy functions on the attention maps by jointly optimizing two loss functions, such that the attention map corresponding to a ground truth concept would have higher energy. We conduct extensive experiments on two challenging video recognition datasets (i.e. TVHI and UCF101), and demonstrate the efficacy of our proposed method.