Do you want to publish a course? Click here

Particle Acceleration in the Cygnus Superbubble

93   0   0.0 ( 0 )
 Added by Binita Hona
 Publication date 2021
  fields Physics
and research's language is English
 Authors B. Hona




Ask ChatGPT about the research

The Cygnus Cocoon is the first gamma-ray superbubble powered by a massive stellar association, the OB2 association. It was postulated that the combined effects of the stellar winds of all the massive O-type stars of the OB2 association can accelerate the cosmic rays to PeV energy in the Cocoon. The conclusive proof of acceleration to PeV energy in the Cocoon will identify the stellar association as a PeV cosmic-ray accelerator, known as PeVatron. However, the Cocoon has been previously studied only up to 10 TeV. In this contribution, using 1343 days of High Altitude Water Cherenkov (HAWC) observatory data, we present the morphological and spectral study of the Cocoon above 1 TeV to beyond 100 TeV. The analysis at higher TeV energies reveals a softer spectrum compared to the GeV gamma-ray observation. This result suggests that the accelerators efficiency decreases around hundreds of TeV, or after being accelerated, the highest-energy protons escape the region. The study above 10 TeV presented here demonstrates how CR accelerators operate in these extreme energies and how particle transport impacts high-energy emission.



rate research

Read More

We present evidence of diffuse, non-thermal X-ray emission from the superbubble 30 Doradus C (30 Dor C) using hard X-ray images and spectra from NuSTAR observations. For this analysis, we utilize data from a 200 ks targeted observation of 30 Dor C as well as 2.8 Ms of serendipitous off-axis observations from the monitoring of nearby SN 1987A. The complete shell of 30 Dor C is detected up to 20 keV, and the young supernova remnant MCSNR J0536-6913 in the southeast of 30 Dor C is not detected above 8 keV. Additionally, six point sources identified in previous Chandra and XMM-Newton investigations have hard X-ray emission coincident with their locations. Joint spectral fits to the NuSTAR and XMM-Newton spectra across the 30 Dor C shell confirm the non-thermal nature of the diffuse emission. Given the best-fit rolloff frequencies of the X-ray spectra, we find maximum electron energies of 70-110 TeV (assuming a B-field strength of 4$mu$G), suggesting 30 Dor C is accelerating particles. Particles are either accelerated via diffusive shock acceleration at locations where the shocks have not stalled behind the H$alpha$ shell, or cosmic-rays are accelerated through repeated acceleration of low-energy particles via turbulence and magnetohydrodynamic waves in the bubbles interior.
We present here the observation of the Cygnus Superbubble (CSB) using the Solid-state slit camera (SSC) aboard the Monitor of All-sky X-ray Image. The CSB is a large diffuse structure in the Cygnus region with enhanced soft X-ray emission. By utilizing the CCD spectral resolution of the SSC, we detect Fe, Ne, Mg emission lines from the CSB for the first time. The best fit model implies thin hot plasma of kT ~ 0.3 keV with depleted abundance of 0.26 +/- 0.1 solar. Joint spectrum fitting of the ROSAT PSPC data and MAXI/SSC data enables us to measure precise values of NH and temperature inside the CSB. The results show that all of the regions in the CSB have similar NH and temperature, indicating that the CSB is single unity. The energy budgets calculation suggests that 2-3 Myrs of stellar wind from the Cyg OB2 is enough to power up the CSB, whereas due to its off center position, the origin of the CSB is most likely a Hypernova.
The study of relativistic particle acceleration is a major topic of high-energy astrophysics. It is well known that massive black holes in active galaxies can release a substantial fraction of their accretion power into energetic particles, producing gamma-rays and relativistic jets. Galactic microquasars (hosting a compact star of 1-10 solar masses which accretes matter from a binary companion) also produce relativistic jets. However, no direct evidence of particle acceleration above GeV energies has ever been obtained in microquasar ejections, leaving open the issue of the occurrence and timing of extreme matter energization during jet formation. Here we report the detection of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3, an exceptional X-ray binary which sporadically produces powerful radio jets. Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE satellite simultaneously with special spectral states of Cygnus X-3 during the period mid-2007/mid-2009. Our observations show that very efficient particle acceleration and gamma-ray propagation out of the inner disk of a microquasar usually occur a few days before major relativistic jet ejections. Flaring particle energies can be thousands of times larger than previously detected maximum values (with Lorentz factors of 105 and 102 for electrons and protons, respectively). We show that the transitional nature of gamma-ray flares and particle acceleration above GeV energies in Cygnus X-3 is clearly linked to special radio/X-ray states preceding strong radio flares. Thus gamma-rays provide unique insight into the nature of physical processes in microquasars.
Star forming regions (SFRs) have been postulated as possible sources of cosmic rays (CRs) in our galaxy. One example of a gamma-ray source associated with an SFR is the Fermi-LAT cocoon, an extended region of gamma-ray emission in the Cygnus X region and attributed to a possible superbubble with freshly accelerated CRs. Because the emission region is surrounded by ionization fronts, it has been named the Cygnus cocoon. CRs in the cocoon could have originated in the OB2 association and been accelerated at the interaction sites of stellar winds of massive O type stars. So far, there is no clear association at TeV energies. Spectral and morphological studies of TeV gamma-ray emission detected by the High Altitude Water Cherenkov (HAWC) observatory at the 2HWC J2031+415 region reveal that the spectral energy distribution of the cocoon extends from GeV to at least tens of TeV. Using HAWC data, we are able to study the acceleration of particles to highest energies in the Cygnus OB2 SFR.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between different sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا