No Arabic abstract
Ternary logic system is the most promising and pursued alternate to the prevailing binary logic systems due to the energy efficiency of circuits following reduced circuit complexity and chip area. In this paper, we have proposed a ternary 3-Transistor Dynamic Random-Access Memory (3T-DRAM) cell using a single word-line for both read and write operation. For simulation of the circuit, we have used Carbon-Nano-Tube Field Effect Transistor (CNTFET). Here, we have analyzed the operation of the circuit considering different process variations and showed the results for write delay, read sensing time, and consumed current. Along with the basic DRAM design, we have proposed a ternary sense circuitry for the proper read operation of the proposed DRAM. The simulation and analysis are executed using the H-SPICE tool with Stanford University CNTFET model.
The design of systems implementing low precision neural networks with emerging memories such as resistive random access memory (RRAM) is a significant lead for reducing the energy consumption of artificial intelligence. To achieve maximum energy efficiency in such systems, logic and memory should be integrated as tightly as possible. In this work, we focus on the case of ternary neural networks, where synaptic weights assume ternary values. We propose a two-transistor/two-resistor memory architecture employing a precharge sense amplifier, where the weight value can be extracted in a single sense operation. Based on experimental measurements on a hybrid 130 nm CMOS/RRAM chip featuring this sense amplifier, we show that this technique is particularly appropriate at low supply voltage, and that it is resilient to process, voltage, and temperature variations. We characterize the bit error rate in our scheme. We show based on neural network simulation on the CIFAR-10 image recognition task that the use of ternary neural networks significantly increases neural network performance, with regards to binary ones, which are often preferred for inference hardware. We finally evidence that the neural network is immune to the type of bit errors observed in our scheme, which can therefore be used without error correction.
Training of deep neural networks (DNNs) is a computationally intensive task and requires massive volumes of data transfer. Performing these operations with the conventional von Neumann architectures creates unmanageable time and power costs. Recent studies have shown that mixed-signal designs involving crossbar architectures are capable of achieving acceleration factors as high as 30,000x over the state of the art digital processors. These approaches involve utilization of non-volatile memory (NVM) elements as local processors. However, no technology has been developed to-date that can satisfy the strict device requirements for the unit cell. This paper presents the superconducting nanowire-based processing element as a cross-point device. The unit cell has many programmable non-volatile states that can be used to perform analog multiplication. Importantly, these states are intrinsically discrete due to quantization of flux, which provides symmetric switching characteristics. Operation of these devices in a crossbar is described and verified with electro-thermal circuit simulations. Finally, validation of the concept in an actual DNN training task is shown using an emulator.
Ternary content addressable memory (TCAM) has been a critical component in caches, routers, etc., in which density, speed, power efficiency, and reliability are the major design targets. There have been the conventional low-write-power but bulky SRAM-based TCAM design, and also denser but less reliable or higher-write-power TCAM designs using nonvolatile memory (NVM) devices. Meanwhile, some TCAM designs using dynamic memories have been also proposed. Although dynamic design TCAM is denser than CMOS SRAM TCAM and more reliable than NVM TCAM, the conventional row-by-row refresh operations land up with a bottleneck of interference with normal TCAM activities. Therefore, this paper proposes a custom low-power dynamic TCAM using nanoelectromechanical (NEM) relay devices utilizing one-shot refresh to solve the memory refresh problem. By harnessing the unique NEM relay characteristics with a proposed novel cell structure, the proposed TCAM occupies a small footprint of only 3 transistors (with two NEM relays integrated on the top through the back-end-of-line process), which significantly outperforms the density of 16-transistor SRAM-based TCAM. In addition, evaluations show that the proposed TCAM improves the write energy efficiency by 2.31x, 131x, and 13.5x over SRAM, RRAM, and FeFET TCAMs, respectively; The search energy-delay-product is improved by 12.7x, 1.30x, and 2.83x over SRAM, RRAM, and FeFET TCAMs, respectively.
This paper addresses the issue of data injection attacks on control systems. We consider attacks which aim at maximizing system disruption while staying undetected in the finite horizon. The maximum possible disruption caused by such attacks is formulated as a non-convex optimization problem whose dual problem is a convex semi-definite program. We show that the duality gap is zero using S-lemma. To determine the optimal attack vector, we formulate a soft-constrained optimization problem using the Lagrangian dual function. The framework of dynamic programming for indefinite cost functions is used to solve the soft-constrained optimization problem and determine the attack vector. Using the Karush-Kuhn-Tucker conditions, we also provide necessary and sufficient conditions under which the obtained attack vector is optimal to the primal problem.
Erroneous submission in violation of copyright removed by arXiv admin.