Do you want to publish a course? Click here

Quantum to Classical Walk Transitions Tuned by Spontaneous Emissions

77   0   0.0 ( 0 )
 Added by Jerry Clark
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have realized a quantum walk in momentum space with a rubidium spinor Bose-Einstein condensate by applying a periodic kicking potential as a walk operator and a resonant microwave pulse as a coin toss operator. The generated quantum walks appear to be stable for up to ten steps and then quickly transit to classical walks due to spontaneous emissions induced by laser beams of the walk operator. We investigate these quantum to classical walk transitions by introducing well controlled spontaneous emissions with an external light source during quantum walks. Our findings demonstrate a scheme to control the robustness of the quantum walks and can also be applied to other cold atom experiments involving spontaneous emissions.



rate research

Read More

The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking transitions, their two lowest eigenstates change from non-degenerate to degenerate. Therefore, due to the corresponding energy-gap vanishes, the conventional adiabatic condition becomes invalid. Here we explore the existence of quantum adiabatic evolutions in spontaneous symmetry-breaking transitions and derive a symmetry-dependent adiabatic condition. Because the driven Hamiltonian conserves the symmetry in the whole process, the transition between different instantaneous eigenstates with different symmetries is forbidden. Therefore, even if the minimum energy-gap vanishes, symmetry-protected quantum adiabatic evolutioncan still appear when the driven system varies according to the symmetry-dependent adiabatic condition. This study not only advances our understandings of quantum adiabatic evolution and spontaneous symmetry-breaking transitions, but also provides extensive applications ranging from quantum state engineering, topological Thouless pumping to quantum computing.
We investigate the wavepacket spreading after a single spin flip in prototypical two-dimensional ferromagnetic and antiferromagnetic quantum spin systems. We find characteristic spatial magnon density profiles: While the ferromagnet shows a square-shaped pattern reflecting the underlying lattice structure, as exhibited by quantum walkers, the antiferromagnet shows a circular-shaped pattern which hides the lattice structure and instead resembles a classical wave pattern. We trace these fundamentally different behaviors back to the distinctly different magnon energy-momentum dispersion relations and also provide a real-space interpretation. Our findings point to new opportunities for real-time, real-space imaging of quantum magnets both in materials science and in quantum simulators.
We add quantum fluctuations to a classical Hamiltonian model with synchronized period doubling in the thermodynamic limit, replacing the $N$ classical interacting angular momenta with quantum spins of size $l$. The full permutation symmetry of the Hamiltonian allows a mapping to a bosonic model and the application of exact diagonalization for quite large system size. {In the thermodynamic limit $Ntoinfty$ the model is described by a system of Gross-Pitaevski equations whose classical-chaos properties closely mirror the finite-$N$ quantum chaos.} For $Ntoinfty$, and $l$ finite, Rabi oscillations mark the absence of persistent period doubling, which is recovered for $ltoinfty$ with Rabi-oscillation frequency tending exponentially to 0. For the chosen initial conditions, we can represent this model in terms of Pauli matrices and apply the discrete truncated Wigner approximation. For finite $l$ this approximation reproduces no Rabi oscillations but correctly predicts the absence of period doubling. Quantitative agreement is recovered in the classical $ltoinfty$ limit.
We study the non-integrable Dicke model, and its integrable approximation, the Tavis-Cummings model, as functions of both the coupling constant and the excitation energy. Excited-state quantum phase transitions (ESQPT) are found analyzing the density of states in the semi-classical limit and comparing it with numerical results for the quantum case in large Hilbert spaces, taking advantage of efficient methods recently developed. Two different ESQPTs are identified in both models, which are signaled as singularities in the semi-classical density of states, one {em static} ESQPT occurs for any coupling, whereas a dynamic ESQPT is observed only in the superradiant phase. The role of the unstable fixed points of the Hamiltonian semi-classical flux in the occurrence of the ESQPTs is discussed and determined. Numerical evidence is provided that shows that the semi-classical result describes very well the tendency of the quantum energy spectrum for any coupling in both models. Therefore the semi-classical density of states can be used to study the statistical properties of the fluctuation in the spectra, a study that is presented in a companion paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا