We give the beginnings of the development of a theory of what we call R-coactions of a locally compact group on a $C^*$-algebra. These are the coactions taking values in the maximal tensor product, as originally proposed by Raeburn. We show that the theory has some gaps as compared to the more familiar theory of standard coactions. However, we indicate how we needed to develop some of the basic properties of R-coactions as a tool in our program involving the use of coaction functors in the study of the Baum-Connes conjecture.
The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to general (possibly non-self-adjoint) operator algebras. While numerous subtleties emerge in this greater generality, we exhibit novel tools for constructing finite-dimensional approximations. One such tool is a notion of a residually finite-dimensional coaction of a semigroup on an operator algebra, which allows us to construct finite-dimensional approximations for operator algebras of functions and operator algebras of semigroups. Our investigation is intimately related to the question of whether residual finite-dimensionality of an operator algebra is inherited by its maximal $mathrm{C}^*$-cover, which we resolve in many cases of interest.
A coaction d of a locally compact group G on a C*-algebra A is maximal if a certain natural map from A times_d G times_{d hat} G onto A otimes K(L^2(G)) is an isomorphism. All dual coactions on full crossed products by group actions are maximal; a discrete coaction is maximal if and only if A is the full cross-sectional algebra of the corresponding Fell bundle. For every nondegenerate coaction of G on A, there is a maximal coaction of G on an extension of A such that the quotient map induces an isomorphism of the crossed products.
In this short note we prove that the reduced group C*-algebra of a locally compact group admits a non-zero trace if and only if the amenable radical of the group is open. This completely answers a question raised by Forrest, Spronk and Wiersma.
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composing the automorphism with the old involution. For a given fundamental symmetry, a Krein C*-algebra decomposes as a direct sum of an even part (a C*-algebra) and an odd part (a Hilbert C*-bimodule on the even part). Our goal here is to develop a spectral theory for commutative unital Krein C*-algebras when the odd part is a symmetric imprimitivity C*-bimodule over the even part and there exists an additional suitable exchange symmetry between the odd and even parts.
We extend the usual theory of universal C*-algebras from generators and relations in order to allow some relations to be described using the strong operator topology. In particular, we can allow some infinite sum relations. We prove a universal property for the algebras we define and we show how the Cuntz algebra of infinite isometries as well as the Exel-Laca algebras can be described using infinite sum relations. Finally, we give some sufficient conditions for when a C*-algebra generated by projections and partial isometries is a universal C*-algebra using only norm relations, in case one still wants to avoid using relations with respect to the strong operator topology.