Do you want to publish a course? Click here

Persistence of the steady planar normal shock structure in 3-D unsteady potential flows

384   0   0.0 ( 0 )
 Added by Feng Xiao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper concerns the dynamic stability of the steady 3-D wave structure of a planar normal shock front intersecting perpendicularly to a planar solid wall for unsteady potential flows. The stability problem can be formulated as a free boundary problem of a quasi-linear hyperbolic equation of second order in a dihedral-space domain between the shock front and the solid wall. The key difficulty is brought by the edge singularity of the space domain, the intersection curve between the shock front and the solid wall. Different from the 2-D case, for which the singular part of the boundary is only a point, it is a curve for the 3-D case in this paper. This difference brings new difficulties to the mathematical analysis of the stability problem. A modified partial hodograph transformation is introduced such that the extension technique developed for the 2-D case can be employed to establish the well-posed theory for the initial-boundary value problem of the linearized hyperbolic equation of second order in a dihedral-space domain. Moreover, the extension technique is improved in this paper such that loss of regularity in the a priori estimates on the shock front does not occur. Thus the classical nonlinear iteration scheme can be constructed to prove the existence of the solution to the stability problem, which shows the dynamic stability of the steady planar normal shock without applying the Nash-Moser iteration method.



rate research

Read More

290 - Jun Li 2013
Although local existence of multidimensional shock waves has been established in some fundamental references, there are few results on the global existence of those waves except the ones for the unsteady potential flow equations in n-dimensional spaces (n > 4) or in special unbounded space-time domains with non-physical boundary conditions. In this paper, we are concerned with both the local and global multidimensional conic shock wave problem for the unsteady potential flow equations when a pointed piston (i.e., the piston degenerates into a single point at the initial time) or an explosive wave expands fast in 2-D or 3-D static polytropic gas. It is shown that a multidimensional shock wave solution of such a class of quasilinear hyperbolic problems not only exists locally, but it also exists globally in the whole space-time and approaches a self-similar solution as t goes to infinity.
196 - Daomin Cao , Weicheng Zhan 2020
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical circular vortex filament in $mathbb{R}^3$. The construction is based on a study of solutions to the similinear elliptic problem begin{equation*} -frac{1}{r}frac{partial}{partial r}Big(frac{1}{r}frac{partialpsi^varepsilon}{partial r}Big)-frac{1}{r^2}frac{partial^2psi^varepsilon}{partial z^2}=frac{1}{varepsilon^2}left(g(psi^varepsilon)+frac{f(psi^varepsilon)}{r^2}right), end{equation*} where $f$ and $g$ are two given functions of the Stokes stream function $psi^varepsilon$, and $varepsilon>0$ is a small parameter.
134 - Beixiang Fang , Xin Gao 2020
This paper concerns with the existence of transonic shocks for steady Euler flows in a 3-D axisymmetric cylindrical nozzle, which are governed by the Euler equations with the slip boundary condition on the wall of the nozzle and a receiver pressure at the exit. Mathematically, it can be formulated as a free boundary problem with the shock front being the free boundary to be determined. In dealing with the free boundary problem, one of the key points is determining the position of the shock front. To this end, a free boundary problem for the linearized Euler system will be proposed, whose solution gives an initial approximating position of the shock front. Compared with 2-D case, new difficulties arise due to the additional 0-order terms and singularities along the symmetric axis. New observation and careful analysis will be done to overcome these difficulties. Once the initial approximation is obtained, a nonlinear iteration scheme can be carried out, which converges to a transonic shock solution to the problem.
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analytical approximation for the front speed, $v_{{scriptsize{f}}}$, as a function of the stirring intensity, $U$, in good agreement with the numerical results and, for large $U$, the behavior $v_{{scriptsize{f}}}sim U/log(U)$ is predicted. The large scale of the velocity field mainly rules the front speed behavior even in the presence of smaller scales. In the unsteady (time-periodic) case, the front speed displays a phase-locking on the flow frequency and, albeit the Lagrangian dynamics is chaotic, chaos in front dynamics only survives for a transient. Asymptotically the front evolves periodically and chaos manifests only in the spatially wrinkled structure of the front.
488 - Gui-Qiang Chen 2007
For an upstream supersonic flow past a straight-sided cone in $R^3$ whose vertex angle is less than the critical angle, a transonic (supersonic-subsonic) shock-front attached to the cone vertex can be formed in the flow. In this paper we analyze the stability of transonic shock-fronts in three-dimensional steady potential flow past a perturbed cone. We establish that the self-similar transonic shock-front solution is conditionally stable in structure with respect to the conical perturbation of the cone boundary and the upstream flow in appropriate function spaces. In particular, it is proved that the slope of the shock-front tends asymptotically to the slope of the unperturbed self-similar shock-front downstream at infinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا