Do you want to publish a course? Click here

Unsupervised Domain-adaptive Hash for Networks

125   0   0.0 ( 0 )
 Added by Tao He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Abundant real-world data can be naturally represented by large-scale networks, which demands efficient and effective learning algorithms. At the same time, labels may only be available for some networks, which demands these algorithms to be able to adapt to unlabeled networks. Domain-adaptive hash learning has enjoyed considerable success in the computer vision community in many practical tasks due to its lower cost in both retrieval time and storage footprint. However, it has not been applied to multiple-domain networks. In this work, we bridge this gap by developing an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH. Specifically, we develop four {task-specific yet correlated} components: (1) network structure preservation via a hard groupwise contrastive loss, (2) relaxation-free supervised hashing, (3) cross-domain intersected discriminators, and (4) semantic center alignment. We conduct a wide range of experiments to evaluate the effectiveness and efficiency of our method on a range of tasks including link prediction, node classification, and neighbor recommendation. Our evaluation results demonstrate that our model achieves better performance than the state-of-the-art conventional discrete embedding methods over all the tasks.

rate research

Read More

Advances in visual navigation methods have led to intelligent embodied navigation agents capable of learning meaningful representations from raw RGB images and perform a wide variety of tasks involving structural and semantic reasoning. However, most learning-based navigation policies are trained and tested in simulation environments. In order for these policies to be practically useful, they need to be transferred to the real-world. In this paper, we propose an unsupervised domain adaptation method for visual navigation. Our method translates the images in the target domain to the source domain such that the translation is consistent with the representations learned by the navigation policy. The proposed method outperforms several baselines across two different navigation tasks in simulation. We further show that our method can be used to transfer the navigation policies learned in simulation to the real world.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on improving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.
Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching marginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.
The assumption that training and testing samples are generated from the same distribution does not always hold for real-world machine-learning applications. The procedure of tackling this discrepancy between the training (source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centers on finding correspondences between samples of each domain. The correspondences are obtained by treating the source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order and second-order similarities between the graphs as well as a class-based regularization. We have also developed a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic, image classification and sentiment classification datasets. Results validated that the proposed local sample-to-sample matching method out-performs traditional moment-matching methods and is competitive with respect to current local domain-adaptation methods.
We address the task of domain generalization, where the goal is to train a predictive model such that it is able to generalize to a new, previously unseen domain. We choose a hierarchical generative approach within the framework of variational autoencoders and propose a domain-unsupervised algorithm that is able to generalize to new domains without domain supervision. We show that our method is able to learn representations that disentangle domain-specific information from class-label specific information even in complex settings where domain structure is not observed during training. Our interpretable method outperforms previously proposed generative algorithms for domain generalization as well as other non-generative state-of-the-art approaches in several hierarchical domain settings including sequential overlapped near continuous domain shift. It also achieves competitive performance on the standard domain generalization benchmark dataset PACS compared to state-of-the-art approaches which rely on observing domain-specific information during training, as well as another domain unsupervised method. Additionally, we proposed model selection purely based on Evidence Lower Bound (ELBO) and also proposed weak domain supervision where implicit domain information can be added into the algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا