Do you want to publish a course? Click here

High-dimensional acousto-optoelectric correlation spectroscopy reveals coupled carrier dynamics in polytypic nanowires

83   0   0.0 ( 0 )
 Added by Hubert Krenner
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The authors combine acousto-optoelectric and multi-channel photon correlation spectroscopy to probe spatio-temporal carrier dynamics induced by a piezoelectric surface acoustic wave (SAW). The technique is implemented by combining phase-locked optical micro-photoluminescence spectroscopy and simultaneous three-channel time resolved detection. From the recorded time correlated single photon counting data the time transients of individual channels and the second and third order correlation functions are obtained with sub-nanosecond resolution. The method is validated by probing the correlations SAW-driven carrier dynamics between three decay channels of a single polytypic semiconductor nanowire on a conventional LiNbO$_mathrm{3}$ SAW delay line chip. The method can be readily applied to other types of nanosystems and probe SAW-regulated charge state preparation in quantum dots, charge transfer processes in van der Waals heterostructures or other types of hybrid nanoarchitectures.



rate research

Read More

Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to maintain control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons. We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carrier mean free path.
Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band to band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs. InP NW) and less strongly on crystal structure (ZB vs. WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NW reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures which lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.
The conducting polymer polyaniline (PANI) has a wide range of optoelectronic applications due to its unique electronic and optical characteristics. Although extensive works have been performed to understand the equilibrium properties, the nature of the charge type that governs its non-equilibrium optical response has been barely understood; a number of studies have debated the nature of photo-generated charge type in PANI, specifically whether it is polaron or exciton based. Here, we report experimental evidence that the charge relaxation dynamics of PANI are dominated by excitons. Utilizing ultrafast spin-resolved pump-probe spectroscopy, we observed that PANI charge dynamics are strongly spin-polarized, exhibiting a spin Pauli-blocking effect. Investigations including both spin-independent and spindependent dynamics reveal that there is no spin-flip process involved in charge relaxation. This provides compelling evidence of an exciton-dominated photo-response in PANI.
We study the magneto-transport and magneto-electroluminescence properties of purely n-doped GaAs/Al$_{0.6}$Ga$_{0.4}$As resonant tunneling diodes with an In$_{0.15}$Ga$_{0.85}$As quantum well and emitter prewell. Before the resonant current condition, magneto-transport measurements reveal charge carrier densities comparable for diodes with and without the emitter prewell. The Landau level splitting is observed in the electroluminescence emission from the emitter prewell, enabling the determination of the charge carrier build-up. Our findings show that magneto-electroluminescence spectroscopy techniques provide useful insights on the charge carrier dynamics in resonant tunneling diodes and is a versatile tool to complement magneto-transport techniques. This approach will drive the way for developing potentially more efficient opto-electronic resonant tunneling devices, by e.g., monitoring voltage dependent charge accumulation for improving built-in fields and hence to maximize photodetector efficiency and/or minimize optical losses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا