Do you want to publish a course? Click here

Connecting solar flare hard X-ray spectra to in situ electron spectra. A comparison of RHESSI and STEREO/SEPT observations

94   0   0.0 ( 0 )
 Added by Nina Dresing
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the characteristics of flare-accelerated energetic electrons at the Sun with those injected into interplanetary space. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 minutes. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays.



rate research

Read More

We present a statistical analysis of near-relativistic (NR) solar energetic electron event spectra near 1au. We use measurements of the STEREO Solar Electron and Proton Telescope (SEPT) in the energyrange of 45-425 keV and utilize the SEPT electron event list containing all electron events observed bySTEREO A and STEREO B from 2007 through 2018. We select 781 events with significant signal tonoise ratios for our analysis and fit the spectra with single or broken power law functions of energy.We find 437 (344) events showing broken (single) power laws in the energy range of SEPT. The eventswith broken power laws show a mean break energy of about 120 keV. We analyze the dependence ofthe spectral index on the rise times and peak intensities of the events as well as on the presence ofrelativistic electrons. The results show a relation between the power law spectral index and the risetimes of the events with softer spectra belonging to rather impulsive events. Long rise-time events areassociated with hard spectra as well as with the presence of higher energy (>0.7 MeV) electrons. Thisgroup of events cannot be explained by a pure flare scenario but suggests an additional accelerationmechanism, involving a prolonged acceleration and/or injection of the particles. A dependence of thespectral index on the longitudinal separation from the parent solar source region was not found. Astatistical analysis of the spectral indices during impulsively rising events (rise times<20 minutes) isalso shown.
Solar flare hard X-ray spectroscopy serves as a key diagnostic of the accelerated electron spectrum. However, the standard approach using the collisional cold thick-target model poorly constrains the lower-energy part of the accelerated electron spectrum, and hence the overall energetics of the accelerated electrons are typically constrained only to within one or two orders of magnitude. Here we develop and apply a physically self-consistent warm-target approach which involves the use of both hard X-ray spectroscopy and imaging data. The approach allows an accurate determination of the electron distribution low-energy cutoff, and hence the electron acceleration rate and the contribution of accelerated electrons to the total energy released, by constraining the coronal plasma parameters. Using a solar flare observed in X-rays by the {em RHESSI} spacecraft, we demonstrate that using the standard cold-target methodology, the low-energy cutoff (and hence the energy content in electrons) is essentially undetermined. However, the warm-target methodology can determine the low-energy electron cutoff with $sim$7% uncertainty at the $3sigma$ level and hence permits an accurate quantitative study of the importance of accelerated electrons in solar flare energetics.
Previous estimates of the solar flare abundances of Si, S, Cl, Ar, and K from the RESIK X-ray crystal spectrometer on board the CORONAS-F spacecraft were made on the assumption of isothermal X-ray emission. We investigate the effect on these estimates by relaxing this assumption and instead determining the differential emission measure (DEM) or thermal structure of the emitting plasma by re-analyzing RESIK data for a GOES class M1.0 flare on 2002 November~14 (SOL2002-11-14T22:26) for which there was good data coverage. The analysis method uses a maximum-likelihood (Withbroe--Sylwester) routine for evaluating the DEM. In a first step, called here AbuOpt, an optimized set of abundances of Si, S, Ar, and K is found that is consistent with the observed spectra. With these abundances, the differential emission measure evolution during the flare is found. The abundance optimization leads to revised abundances of silicon and sulfur in the flare plasma: $A({rm S}) = 6.94 pm 0.06$ and $A({rm Si}) = 7.56 pm 0.08$ (on a logarithmic scale with $A({rm H}) = 12$). Previously determined abundances of Ar, K, and Cl from an isothermal assumption are still the preferred values. During the flares maximum phase, the X-ray-emitting plasma has a basically two-temperature structure, with the cooler plasma with approximately constant temperature (3--6~MK) and a hotter plasma with temperature $16-21$~MK. Using imaging data from the RHESSI hard X-ray spacecraft, the emission volume of the hot plasma is deduced from which lower limits of the electron density $N_e$ and the thermal content of the plasma are given.
139 - Lisa M. Winter 2015
We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux level. We established this relationship based on an analysis of the Geostationary Operational Environmental Satellites (GOES) X-ray observations of ~ 50,000 X, M, C, and B flares derived from the NOAA/SWPC flares catalog. Employing a combination of machine learning techniques (K-nearest neighbors and nearest-centroid algorithms) we show a separation of the observed parameters for the different peak flaring energies. This analysis is validated by successfully predicting the flare classes for 100% of the X-class flares, 76% of the M-class flares, 80% of the C-class flares and 81% of the B-class flares for solar cycle 24, based on the training of the parametric extracts for solar flares in cycles 22-23.
The aim of this paper is to demonstrate the effect of turbulent background density fluctuations on flare-accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulated the propagation of a beam of accelerated electrons from the solar corona to the chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculated the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fitted the footpoint spectrum using the collisional thick-target model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to a higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high-energy X-rays than expected if the density inhomogeneity is not considered. We find that the level of energy gain is strongly dependent on the initial electron beam density at higher energy and the magnitude of the density gradient in the background plasma. The most significant gains are for steep (soft) spectra that initially had few electrons at higher energies. If the X-ray spectrum of the simulated footpoint emission are fitted with the standard thick-target model (as is routinely done with RHESSI observations) some simulation scenarios produce more than an order-of-magnitude overestimate of the number of electrons $>50$keV in the source coronal distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا