Do you want to publish a course? Click here

Cascaded Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser MISO Systems

79   0   0.0 ( 0 )
 Added by Huayan Guo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper investigates the uplink cascaded channel estimation for intelligent-reflecting-surface (IRS)-assisted multi-user multiple-input-single-output systems. We focus on a sub-6 GHz scenario where the channel propagation is not sparse and the number of IRS elements can be larger than the number of BS antennas. A novel channel estimation protocol without the need of on-off amplitude control to avoid the reflection power loss is proposed. In addition, the pilot overhead is substantially reduced by exploiting the common-link structure to decompose the cascaded channel coefficients by the multiplication of the common-link variables and the user-specific variables. However, these two types of variables are highly coupled, which makes them difficult to estimate. To address this issue, we formulate an optimization-based joint channel estimation problem, which only utilizes the covariance of the cascaded channel. Then, we design a low-complexity alternating optimization algorithm with efficient initialization for the non-convex optimization problem, which achieves a local optimum solution. To further enhance the estimation accuracy, we propose a new formulation to optimize the training phase shifting configuration for the proposed protocol, and then solve it using the successive convex approximation algorithm. Comprehensive simulations verify that the proposed algorithm has supreme performance compared to various state-of-the-art baseline schemes.



rate research

Read More

112 - Zhaorui Wang , Liang Liu , 2019
In the intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the passive beamforming gain of IRS because of the considerable overhead required for channel estimation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated if the passive IRS cannot estimate its channels with the base station (BS) and users due to its lack of radio frequency (RF) chains, where $K$, $N$ and $M$ denote the number of users, reflecting elements of the IRS, and antennas at the BS, respectively. This number can be extremely large in practice considering the current trend of massive MIMO (multiple-input multiple-output), i.e., a large $M$, and massive connectivity, i.e., a large $K$. To accurately estimate such a large number of channel coefficients within a short time interval, we devote our endeavour in this paper to investigating the efficient pilot-based channel estimation method in IRS-assisted uplink communications. Building upon the observation that the IRS reflects the signals from all the users to the BS via the same channels, we analytically verify that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients in the case without noise. In contrast to the conventional uplink communications without IRS in which the minimum pilot sequence length for channel estimation is independent with the number of receive antennas, our study reveals the significant role of massive MIMO in reducing the channel training time for IRS-assisted communication systems.
In this paper, we consider channel estimation for intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) systems, where an IRS is deployed to assist the data transmission from the base station (BS) to a user. It is shown that for the purpose of joint active and passive beamforming, the knowledge of a large-size cascade channel matrix needs to be acquired. To reduce the training overhead, the inherent sparsity in mmWave channels is exploited. By utilizing properties of Katri-Rao and Kronecker products, we find a sparse representation of the cascade channel and convert cascade channel estimation into a sparse signal recovery problem. Simulation results show that our proposed method can provide an accurate channel estimate and achieve a substantial training overhead reduction.
161 - Zhaorui Wang , Liang Liu , 2019
In intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the beamforming gain of IRS because of the considerable overhead required for channel estimation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated, where $K$, $N$ and $M$ denote the numbers of users, IRS reflecting elements, and antennas at the base station (BS), respectively. To accurately estimate such a large number of channel coefficients within a short time interval, we propose a novel three-phase pilot-based channel estimation framework in this paper for IRS-assisted uplink multiuser communications. Under this framework, we analytically prove that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients for the case without receiver noise at the BS. In contrast to the channel estimation for conventional uplink communications without IRS where the minimum channel estimation time is independent of the number of receive antennas at the BS, our result reveals the crucial role of massive MIMO (multiple-input multiple-output) in reducing the channel estimation time for IRS-assisted communications. Further, for the case with receiver noise, the user pilot sequences, IRS reflecting coefficients, and BS linear minimum mean-squared error (LMMSE) channel estimators are characterized in closed-form, and the corresponding estimation mean-squared error (MSE) is quantified.
Channel estimation is the main hurdle to reaping the benefits promised by the intelligent reflecting surface (IRS), due to its absence of ability to transmit/receive pilot signals as well as the huge number of channel coefficients associated with its reflecting elements. Recently, a breakthrough was made in reducing the channel estimation overhead by revealing that the IRS-BS (base station) channels are common in the cascaded user-IRS-BS channels of all the users, and if the cascaded channel of one typical user is estimated, the other users cascaded channels can be estimated very quickly based on their correlation with the typical users channel cite{b5}. One limitation of this strategy, however, is the waste of user energy, because many users need to keep silent when the typical users channel is estimated. In this paper, we reveal another correlation hidden in the cascaded user-IRS-BS channels by observing that the user-IRS channel is common in all the cascaded channels from users to each BS antenna as well. Building upon this finding, we propose a novel two-phase channel estimation protocol in the uplink communication. Specifically, in Phase I, the correlation coefficients between the channels of a typical BS antenna and those of the other antennas are estimated; while in Phase II, the cascaded channel of the typical antenna is estimated. In particular, all the users can transmit throughput Phase I and Phase II. Under this strategy, it is theoretically shown that the minimum number of time instants required for perfect channel estimation is the same as that of the aforementioned strategy in the ideal case without BS noise. Then, in the case with BS noise, we show by simulation that the channel estimation error of our proposed scheme is significantly reduced thanks to the full exploitation of the user energy.
112 - Gui Zhou , Cunhua Pan , Hong Ren 2019
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim for minimizing the transmit power while ensuring that the achievable rate of each user meets the quality of service (QoS) requirement for all possible channel error realizations. With unit-modulus and rate constraints, this problem is non-convex. The imperfect CSI further increases the difficulty of solving this problem. By using approximation and transformation techniques, we convert this problem into a squence of semidefinite programming (SDP) subproblems that can be efficiently solved. Numerical results show that the proposed robust beamforming design can guarantee the required QoS targets for all the users.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا