Do you want to publish a course? Click here

Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications

113   0   0.0 ( 0 )
 Added by Liang Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the passive beamforming gain of IRS because of the considerable overhead required for channel estimation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated if the passive IRS cannot estimate its channels with the base station (BS) and users due to its lack of radio frequency (RF) chains, where $K$, $N$ and $M$ denote the number of users, reflecting elements of the IRS, and antennas at the BS, respectively. This number can be extremely large in practice considering the current trend of massive MIMO (multiple-input multiple-output), i.e., a large $M$, and massive connectivity, i.e., a large $K$. To accurately estimate such a large number of channel coefficients within a short time interval, we devote our endeavour in this paper to investigating the efficient pilot-based channel estimation method in IRS-assisted uplink communications. Building upon the observation that the IRS reflects the signals from all the users to the BS via the same channels, we analytically verify that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients in the case without noise. In contrast to the conventional uplink communications without IRS in which the minimum pilot sequence length for channel estimation is independent with the number of receive antennas, our study reveals the significant role of massive MIMO in reducing the channel training time for IRS-assisted communication systems.



rate research

Read More

161 - Zhaorui Wang , Liang Liu , 2019
In intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the beamforming gain of IRS because of the considerable overhead required for channel estimation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated, where $K$, $N$ and $M$ denote the numbers of users, IRS reflecting elements, and antennas at the base station (BS), respectively. To accurately estimate such a large number of channel coefficients within a short time interval, we propose a novel three-phase pilot-based channel estimation framework in this paper for IRS-assisted uplink multiuser communications. Under this framework, we analytically prove that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients for the case without receiver noise at the BS. In contrast to the channel estimation for conventional uplink communications without IRS where the minimum channel estimation time is independent of the number of receive antennas at the BS, our result reveals the crucial role of massive MIMO (multiple-input multiple-output) in reducing the channel estimation time for IRS-assisted communications. Further, for the case with receiver noise, the user pilot sequences, IRS reflecting coefficients, and BS linear minimum mean-squared error (LMMSE) channel estimators are characterized in closed-form, and the corresponding estimation mean-squared error (MSE) is quantified.
184 - Zhaorui Wang , Liang Liu , 2020
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studies the feasibility of adopting the intelligent reflecting surface (IRS) to further improve the beamforming gain of the uplink communications in a massive MIMO system. Under such a novel system, the central question lies in whether the IRS is able to enhance the network throughput as expected, if the channel estimation overhead is taken into account. In this paper, we first show that the favorable propagation property for the conventional massive MIMO system without IRS, i.e., the channels of arbitrary two users are orthogonal, no longer holds for the IRS-assisted massive MIMO system, due to its special channel property that each IRS element reflects the signals from all the users to the BS via the same channel. As a result, the maximal-ratio combining (MRC) receive beamforming strategy leads to strong inter-user interference and thus even lower user rates than those of the massive MIMO system without IRS. To tackle this challenge, we propose a novel strategy for zero-forcing (ZF) beamforming design at the BS and reflection coefficients design at the IRS to efficiently null the inter-user interference. Under our proposed strategy, it is rigorously shown that even if the channel estimation overhead is considered, the IRS-assisted massive MIMO system can always achieve higher throughput compared to its counterpart without IRS, despite the fact that the favorable propagation property no longer holds.
In this paper, the minimum mean square error (MMSE) channel estimation for intelligent reflecting surface (IRS) assisted wireless communication systems is investigated. In the considered setting, each row vector of the equivalent channel matrix from the base station (BS) to the users is shown to be Bessel $K$ distributed, and all these row vectors are independent of each other. By introducing a Gaussian scale mixture model, we obtain a closed-form expression for the MMSE estimate of the equivalent channel, and determine analytical upper and lower bounds on the mean square error. Using the central limit theorem, we conduct an asymptotic analysis of the MMSE estimate, and show that the upper bound on the mean square error of the MMSE estimate is equal to the asymptotic mean square error of the MMSE estimation when the number of reflecting elements at the IRS tends to infinity. Numerical simulations show that the gap between the upper and lower bounds are very small, and they almost overlap with each other at medium signal-to-noise ratio (SNR) levels and moderate number of elements at the IRS.
110 - Shu Sun , Hangsong Yan 2020
In wireless systems aided by reconfigurable intelligent surfaces (RISs), channel state information plays a pivotal role in achieving the performance gain of RISs. Mobility renders accurate channel estimation (CE) more challenging due to the Doppler effect. In this letter, we propose two practical wideband CE schemes incorporating Doppler shift adjustment (DSA) for multi-path and single-path propagation environments, respectively, for RIS-assisted communication with passive reflecting elements. For the multi-path scenario, ordinary CE is first executed assuming quasi-static channels, followed by DSA realized via joint RIS reflection pattern selection and transformations between frequency and time domains. The proposed CE necessitates only one more symbol incurring negligible extra overhead compared with the number of symbols required for the original CE. For the single-path case which is especially applicable to millimeter-wave and terahertz systems, a novel low-complexity CE method is devised capitalizing on the form of the array factors at the RIS. Simulation results demonstrate that the proposed algorithms yield high CE accuracy and achievable rate with low complexity, and outperform representative benchmark schemes.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا