No Arabic abstract
We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a bilinear term as a holographic quantum mechanical description of an eternal traversable wormhole in the low temperature limit. Each SYK system consists of $N$ Majorana fermions coupled by random $q$-body interactions. The degree of sparseness is captured by a regular hypergraph in such a way that the Hamiltonian contains exactly $k,N$ independent terms. We improve on the theoretical understanding of the sparseness property by using known measures of hypergraph expansion. We show that the sparse version of the two coupled SYK model is gapped with a ground state close to a thermofield double state. Using Krylov subspace and parallelization techniques, we simulate the system for $q=4$ and $q=8.$ The sparsity of the model allows us to explore larger values of $N$ than the ones existing in the literature for the all-to-all SYK. We analyze in detail the two-point functions and the transmission amplitude of signals between the two systems. We identify a range of parameters where revivals obey the scaling predicted by holography and signals can be interpreted as traversing the wormhole.
We study traversable wormhole solutions in pure gauged $N!=!2$ supergravity with and without electromagnetic fields, which are locally isometric under $mathrm{SO}(2,1)!times!mathrm{SO}(1,1)$. The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, the isometry group is now globally $mathrm{SO}(2,1)!times!mathrm{SO}(2)$. The wormholes connect two asymptotic, locally $mathrm{AdS}_4$ regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how that these space-times avoid a topological censorship theorem.
We present a wormhole solution in four dimensions. It is a solution of an Einstein Maxwell theory plus charged massless fermions. The fermions give rise to a negative Casimir-like energy, which makes the wormhole possible. It is a long wormhole that does not lead to causality violations in the ambient space. It can be viewed as a pair of entangled near extremal black holes with an interaction term generated by the exchange of fermion fields. The solution can be embedded in the Standard Model by making its overall size small compared to the electroweak scale.
In this work we explore the effect of rotation in the size of a traversable wormhole obtained via a double trace boundary deformation. We find that at fixed temperature the size of the wormhole increases with the angular momentum $J/Mell$. The amount of information that can be sent through the wormhole increases as well. However, for the type of interaction considered, the wormhole closes as the temperature approaches the extremal limit. We also briefly consider the scenario where the boundary coupling is not spatially homogeneous and show how this is reflected in the wormhole opening.
Wormholes (WH) require negative energy, and therefore an exotic matter source. Since Casimir energy is negative, it has been speculated as a good candidate to source that objects a long time ago. However only very recently a full solution for D = 4 has been found by Garattini [1], thus the Casimir energy can be a source of traversable WHs. Soon later Alencar et al [2] have shown, that this is not true in D = 3. In this paper, we show that Casimir energy can be a source of the Morris-Thorne WH for all spacetime with D > 3. Finally, we add the cosmological constant and find that for D = 3 Casimir WHs are possible, however, the space must always being AdS. For D > 3, we show that the cosmological constant invert the signal with increasing throat size.
We attempt to construct eternal traversable wormholes connecting two asymptotically AdS regions by introducing a static coupling between their dual CFTs. We prove that there are no semiclassical traversable wormholes with Poincare invariance in the boundary directions in higher than two spacetime dimensions. We critically examine the possibility of evading our result by coupling a large number of bulk fields. Static, traversable wormholes with less symmetry may be possible, and could be constructed using the ingredients we develop here.