Do you want to publish a course? Click here

Lessons on Eternal Traversable Wormholes in AdS

78   0   0.0 ( 0 )
 Added by Juan Pedraza
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We attempt to construct eternal traversable wormholes connecting two asymptotically AdS regions by introducing a static coupling between their dual CFTs. We prove that there are no semiclassical traversable wormholes with Poincare invariance in the boundary directions in higher than two spacetime dimensions. We critically examine the possibility of evading our result by coupling a large number of bulk fields. Static, traversable wormholes with less symmetry may be possible, and could be constructed using the ingredients we develop here.



rate research

Read More

We construct an eternal traversable wormhole connecting two asymptotically $text{AdS}_4$ regions. The wormhole is dual to the ground state of a system of two identical holographic CFTs coupled via a single low-dimension operator. The coupling between the two CFTs leads to negative null energy in the bulk, which supports a static traversable wormhole. As the ground state of a simple Hamiltonian, it may be possible to make these wormholes in the lab or on a quantum computer.
In this work we explore the effect of rotation in the size of a traversable wormhole obtained via a double trace boundary deformation. We find that at fixed temperature the size of the wormhole increases with the angular momentum $J/Mell$. The amount of information that can be sent through the wormhole increases as well. However, for the type of interaction considered, the wormhole closes as the temperature approaches the extremal limit. We also briefly consider the scenario where the boundary coupling is not spatially homogeneous and show how this is reflected in the wormhole opening.
We study traversable wormhole solutions in pure gauged $N!=!2$ supergravity with and without electromagnetic fields, which are locally isometric under $mathrm{SO}(2,1)!times!mathrm{SO}(1,1)$. The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, the isometry group is now globally $mathrm{SO}(2,1)!times!mathrm{SO}(2)$. The wormholes connect two asymptotic, locally $mathrm{AdS}_4$ regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how that these space-times avoid a topological censorship theorem.
We present a wormhole solution in four dimensions. It is a solution of an Einstein Maxwell theory plus charged massless fermions. The fermions give rise to a negative Casimir-like energy, which makes the wormhole possible. It is a long wormhole that does not lead to causality violations in the ambient space. It can be viewed as a pair of entangled near extremal black holes with an interaction term generated by the exchange of fermion fields. The solution can be embedded in the Standard Model by making its overall size small compared to the electroweak scale.
Wormholes (WH) require negative energy, and therefore an exotic matter source. Since Casimir energy is negative, it has been speculated as a good candidate to source that objects a long time ago. However only very recently a full solution for D = 4 has been found by Garattini [1], thus the Casimir energy can be a source of traversable WHs. Soon later Alencar et al [2] have shown, that this is not true in D = 3. In this paper, we show that Casimir energy can be a source of the Morris-Thorne WH for all spacetime with D > 3. Finally, we add the cosmological constant and find that for D = 3 Casimir WHs are possible, however, the space must always being AdS. For D > 3, we show that the cosmological constant invert the signal with increasing throat size.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا