No Arabic abstract
Since the renaissance of deep learning (DL), facial expression recognition (FER) has received a lot of interest, with continual improvement in the performance. Hand-in-hand with performance, new challenges have come up. Modern FER systems deal with face images captured under uncontrolled conditions (also called in-the-wild scenario) including occlusions and pose variations. They successfully handle such conditions using deep networks that come with various components like transfer learning, attention mechanism and local-global context extractor. However, these deep networks are highly complex with large number of parameters, making them unfit to be deployed in real scenarios. Is it possible to build a light-weight network that can still show significantly good performance on FER under in-the-wild scenario? In this work, we methodically build such a network and call it as Imponderous Net. We leverage on the aforementioned components of deep networks for FER, and analyse, carefully choose and fit them to arrive at Imponderous Net. Our Imponderous Net is a low calorie net with only 1.45M parameters, which is almost 50x less than that of a state-of-the-art (SOTA) architecture. Further, during inference, it can process at the real time rate of 40 frames per second (fps) in an intel-i7 cpu. Though it is low calorie, it is still power packed in its performance, overpowering other light-weight architectures and even few high capacity architectures. Specifically, Imponderous Net reports 87.09%, 88.17% and 62.06% accuracies on in-the-wild datasets RAFDB, FERPlus and AffectNet respectively. It also exhibits superior robustness under occlusions and pose variations in comparison to other light-weight architectures from the literature.
Facial Expression Recognition (FER) in the wild is an extremely challenging task in computer vision due to variant backgrounds, low-quality facial images, and the subjectiveness of annotators. These uncertainties make it difficult for neural networks to learn robust features on limited-scale datasets. Moreover, the networks can be easily distributed by the above factors and perform incorrect decisions. Recently, vision transformer (ViT) and data-efficient image transformers (DeiT) present their significant performance in traditional classification tasks. The self-attention mechanism makes transformers obtain a global receptive field in the first layer which dramatically enhances the feature extraction capability. In this work, we first propose a novel pure transformer-based mask vision transformer (MVT) for FER in the wild, which consists of two modules: a transformer-based mask generation network (MGN) to generate a mask that can filter out complex backgrounds and occlusion of face images, and a dynamic relabeling module to rectify incorrect labels in FER datasets in the wild. Extensive experimental results demonstrate that our MVT outperforms state-of-the-art methods on RAF-DB with 88.62%, FERPlus with 89.22%, and AffectNet-7 with 64.57%, respectively, and achieves a comparable result on AffectNet-8 with 61.40%.
This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a proposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
In this paper, covariance matrices are exploited to encode the deep convolutional neural networks (DCNN) features for facial expression recognition. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By performing the classification of the facial expressions using Gaussian kernel on SPD manifold, we show that the covariance descriptors computed on DCNN features are more efficient than the standard classification with fully connected layers and softmax. By implementing our approach using the VGG-face and ExpNet architectures with extensive experiments on the Oulu-CASIA and SFEW datasets, we show that the proposed approach achieves performance at the state of the art for facial expression recognition.
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.