Do you want to publish a course? Click here

Capacity Optimality of OAMP: Beyond IID Sensing Matrices and Gaussian Signaling

64   0   0.0 ( 0 )
 Added by Lei Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper studies a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary signal distribution, and forward error control (FEC) coding. We develop a universal Gram-Schmidt orthogonalization for orthogonal approximate message passing (OAMP). Numerous area properties are established based on the state evolution and minimum mean squared error (MMSE) property of OAMP in an un-coded LUIS. As a byproduct, we provide an alternative derivation for the constrained capacity of a LUIS. Under the assumption that the state evolution for OAMP is correct for the coded system, the achievable rate of OAMP is analyzed. We prove that OAMP achieves the constrained capacity of the LUIS with an arbitrary signal distribution provided that a matching condition is satisfied. Meanwhile, we elaborate a capacity-achieving coding principle for LUIS, based on which irregular low-density parity-check (LDPC) codes are optimized for binary signaling in the numerical results. We show that OAMP with the optimized codes has significant performance improvement over the un-optimized ones and the well-known Turbo linear MMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, capacity-approaching bit error rate (BER) performances are observed under various channel conditions.



rate research

Read More

The two-user Gaussian interference channel (G-IC) is revisited, with a particular focus on practically amenable discrete input signalling and treating interference as noise (TIN) receivers. The corresponding deterministic interference channel (D-IC) is first investigated and coding schemes that can achieve the entire capacity region of D-IC under TIN are proposed. These schemes are then systematically translate into multi-layer superposition coding schemes based on purely discrete inputs for the real-valued G-IC. Our analysis shows that the proposed scheme is able to achieve the entire capacity region to within a constant gap for all channel parameters. To the best of our knowledge, this is the first constant-gap result under purely discrete signalling and TIN for the entire capacity region and all the interference regimes. Furthermore, the approach is extended to obtain coding scheme based on discrete inputs for the complex-valued G-IC. For such a scenario, the minimum distance and the achievable rate of the proposed scheme under TIN are analyzed, which takes into account the effects of random phase rotations introduced by the channels. Simulation results show that our scheme is capable of approaching the capacity region of the complex-valued G-IC and significantly outperforms Gaussian signalling with TIN in various interference regimes.
One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.
This paper analyzes the impact of non-Gaussian multipath component (MPC) amplitude distributions on the performance of Compressed Sensing (CS) channel estimators for OFDM systems. The number of dominant MPCs that any CS algorithm needs to estimate in order to accurately represent the channel is characterized. This number relates to a Compressibility Index (CI) of the channel that depends on the fourth moment of the MPC amplitude distribution. A connection between the Mean Squared Error (MSE) of any CS estimation algorithm and the MPC amplitude distribution fourth moment is revealed that shows a smaller number of MPCs is needed to well-estimate channels when these components have large fourth moment amplitude gains. The analytical results are validated via simulations for channels with lognormal MPCs such as the NYU mmWave channel model. These simulations show that when the MPC amplitude distribution has a high fourth moment, the well known CS algorithm of Orthogonal Matching Pursuit performs almost identically to the Basis Pursuit De-Noising algorithm with a much lower computational cost.
We investigate a coded uplink non-orthogonal multiple access (NOMA) configuration in which groups of co-channel users are modulated in accordance with orthogonal time frequency space (OTFS). We take advantage of OTFS characteristics to achieve NOMA spectrum sharing in the delay-Doppler domain between stationary and mobile users. We develop an efficient iterative turbo receiver based on the principle of successive interference cancellation (SIC) to overcome the co-channel interference (CCI). We propose two turbo detector algorithms: orthogonal approximate message passing with linear minimum mean squared error (OAMP-LMMSE) and Gaussian approximate message passing with expectation propagation (GAMP-EP). The interactive OAMP-LMMSE detector and GAMP-EP detector are respectively assigned for the reception of the stationary and mobile users. We analyze the convergence performance of our proposed iterative SIC turbo receiver by utilizing a customized extrinsic information transfer (EXIT) chart and simplify the corresponding detector algorithms to further reduce receiver complexity. Our proposed iterative SIC turbo receiver demonstrates performance improvement over existing receivers and robustness against imperfect SIC process and channel state information uncertainty.
Ultra-reliable low-latency communication (URLLC) requires short packets of data transmission. It is known that when the packet length becomes short, the achievable rate is subject to a penalty when compared to the channel capacity. In this paper, we propose to use faster-than-Nyquist (FTN) signaling to compensate for the achievable rate loss of short packet communications. We investigate the performance of a combination of a low complexity detector of FTN signaling used with nonbinary low-density parity-check (NB-LDPC) codes that is suitable for low-latency and short block length requirements of URLLC systems. Our investigation shows that such combination of low-complexity FTN signaling detection and NB-LDPC codes outperforms the use of close-to-optimal FTN signaling detectors with LDPC codes in terms of error rate performance and also has a considerably lower computational complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا