Do you want to publish a course? Click here

Novel Frameworks for Coded Caching via Cartesian Product with Reduced Subpacketization

119   0   0.0 ( 0 )
 Added by Minquan Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Caching prefetches some library content at users memories during the off-peak times (i.e., {it placement phase}), such that the number of transmissions during the peak-traffic times (i.e., {it delivery phase}) are reduced. A coded caching strategy was originally proposed by Maddah-Ali and Niesen (MN) leading to a multicasting gain compared to the conventional uncoded caching, where each message in the delivery phase is useful to multiple users simultaneously. However, the MN coded caching scheme suffers from the high subpacketization which makes it impractical. In order to reduce the subpacketization while retain the multicast opportunities in the delivery phase, Yan et al. proposed a combinatorial structure called placement delivery array (PDA) to design coded caching schemes. In this paper, we propose two novel frameworks for constructing PDA via Cartesian product, which constructs a PDA for $mK_1$ users by the $m$-fold Cartesian product of a PDA for $K_1$ users. By applying the proposed frameworks to some existing PDAs, three novel caching schemes are obtained which can significantly reduce the subpacketization of the MN scheme while slightly increasing the needed number of transmissions. For instance, for the third scheme which works for any number of users and any memory regime, while reducing the coded caching gain by one, the needed subpacketization is at most $Oleft(sqrt{frac{K}{q}}2^{-frac{K}{q}}right)$ of that of the MN scheme, where $K$ is the number of users, $0<z/q<1$ is the memory ratio of each user, and $q,z$ are coprime.



rate research

Read More

Coded caching is an efficient way to reduce network traffic congestion during peak hours by storing some content at the users local cache memory without knowledge of later demands. The goal of coded caching design is to minimize the transmission rate and the subpacketization. In practice the demand for each user is sensitive since one can get the other users preferences when it gets the other users demands. The first coded caching scheme with private demands was proposed by Wan et al. However the transmission rate and the subpacketization of their scheme increase with the file number stored in the library. In this paper we consider the following secure coded caching: prevent the wiretappers from obtaining any information about the files in the server and protect the demands from all the users in the delivery phase. We firstly introduce a combinatorial structure called secure placement delivery array (SPDA in short) to realize a coded caching scheme for our security setting. Then we obtain three classes of secure schemes by constructing SPDAs, where one of them is optimal. It is worth noting that the transmission rates and the subpacketizations of our schemes are independent to the file number. Furthermore, comparing with the previously known schemes with the same security setting, our schemes have significantly advantages on the subpacketizations and for some parameters have the advantage on the transmission rates.
In a traditional $(H, r)$ combination network, each user is connected to a unique set of $r$ relays. However, few research efforts to consider $(H, r, u)$ multiaccess combination network problem where each $u$ users are connected to a unique set of $r$ relays. A naive strategy to obtain a coded caching scheme for $(H, r, u)$ multiaccess combination network is by $u$ times repeated application of a coded caching scheme for a traditional $(H, r)$ combination network. Obviously, the transmission load for each relay of this trivial scheme is exactly $u$ times that of the original scheme, which implies that as the number of users multiplies, the transmission load for each relay will also multiply. Therefore, it is very meaningful to design a coded caching scheme for $(H, r, u)$ multiaccess combination network with lower transmission load for each relay. In this paper, by directly applying the well known coding method (proposed by Zewail and Yener) for $(H, r)$ combination network, a coded caching scheme (ZY scheme) for $(H, r, u)$ multiaccess combination network is obtained. However, the subpacketization of this scheme has exponential order with the number of users, which leads to a high implementation complexity. In order to reduce the subpacketization, a direct construction of a coded caching scheme for $(H, r, u)$ multiaccess combination network is proposed by means of Combinational Design Theory, where the parameter $u$ must be a combinatorial number. For arbitrary parameter $u$, a hybrid construction of a coded caching scheme for $(H, r, u)$ multiaccess combination network is proposed based on our direct construction. Theoretical and numerical analysis show that our last two schemes have smaller transmission load for each relay compared with the trivial scheme, and have much lower subpacketization compared with ZY scheme.
In this paper, we investigate the transmission delay of cache-aided broadcast networks with user cooperation. Novel coded caching schemes are proposed for both centralized and decentralized caching settings, by efficiently exploiting time and cache resources and creating parallel data delivery at the server and users. We derive a lower bound on the transmission delay and show that the proposed centralized coded caching scheme is emph{order-optimal} in the sense that it achieves a constant multiplicative gap within the lower bound. Our decentralized coded caching scheme is also order-optimal when each users cache size is larger than the threshold $N(1-sqrt[{K-1}]{ {1}/{(K+1)}})$ (approaching 0 as $Kto infty$), where $K$ is the total number of users and $N$ is the size of file library. Moreover, for both the centralized and decentralized caching settings, our schemes obtain an additional emph{cooperation gain} offered by user cooperation and an additional emph{parallel gain} offered by the parallel transmission among the server and users. It is shown that in order to reduce the transmission delay, the number of users parallelly sending signals should be appropriately chosen according to users cache size, and alway letting more users parallelly send information could cause high transmission delay.
In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme based on a new deterministic placement strategy and a parallel delivery strategy. It is shown that the new scheme optimally allocate the communication loads on the server and users, obtaining cooperation gain and parallel gain that greatly reduces the transmission delay. Furthermore, we show that the number of users who parallelly send information should decrease when the users caching size increases. In other words, letting more users parallelly send information could be harmful. Finally, we derive a constant multiplicative gap between the lower bound and upper bound on the transmission delay, which proves that our scheme is order optimal.
In coded caching system we prefer to design a coded caching scheme with low subpacketization and small transmission rate (i.e., the low implementation complexity and the efficient transmission during the peak traffic times). Placement delivery arrays (PDA) can be used to design code caching schemes. In this paper we propose a framework of constructing PDAs via Hamming distance. As an application, two classes of coded caching schemes with linear subpacketizations and small transmission rates are obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا