Do you want to publish a course? Click here

Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without Forgetting

277   0   0.0 ( 0 )
 Added by Anna Kukleva
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Both generalized and incremental few-shot learning have to deal with three major challenges: learning novel classes from only few samples per class, preventing catastrophic forgetting of base classes, and classifier calibration across novel and base classes. In this work we propose a three-stage framework that allows to explicitly and effectively address these challenges. While the first phase learns base classes with many samples, the second phase learns a calibrated classifier for novel classes from few samples while also preventing catastrophic forgetting. In the final phase, calibration is achieved across all classes. We evaluate the proposed framework on four challenging benchmark datasets for image and video few-shot classification and obtain state-of-the-art results for both generalized and incremental few shot learning.



rate research

Read More

213 - Zhibo Fan , Yuchen Ma , Zeming Li 2021
Recently few-shot object detection is widely adopted to deal with data-limited situations. While most previous works merely focus on the performance on few-shot categories, we claim that detecting all classes is crucial as test samples may contain any instances in realistic applications, which requires the few-shot detector to learn new concepts without forgetting. Through analysis on transfer learning based methods, some neglected but beneficial properties are utilized to design a simple yet effective few-shot detector, Retentive R-CNN. It consists of Bias-Balanced RPN to debias the pretrained RPN and Re-detector to find few-shot class objects without forgetting previous knowledge. Extensive experiments on few-shot detection benchmarks show that Retentive R-CNN significantly outperforms state-of-the-art methods on overall performance among all settings as it can achieve competitive results on few-shot classes and does not degrade the base class performance at all. Our approach has demonstrated that the long desired never-forgetting learner is available in object detection.
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NGs topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.
75 - Jiahua Dong , Yang Cong , Gan Sun 2020
3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.
290 - Zhizhong Li , Derek Hoiem 2016
When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا