Current methods for viral discovery target evolutionarily conserved proteins that accurately identify virus families but remain unable to distinguish the zoonotic potential of newly discovered viruses. Here, we apply an attention-enhanced long-short-term memory (LSTM) deep neural net classifier to a highly conserved viral protein target to predict zoonotic potential across betacoronaviruses. The classifier performs with a 94% accuracy. Analysis and visualization of attention at the sequence and structure-level features indicate possible association between important protein-protein interactions governing viral replication in zoonotic betacoronaviruses and zoonotic transmission.
Molecular modeling is an important topic in drug discovery. Decades of research have led to the development of high quality scalable molecular force fields. In this paper, we show that neural networks can be used to train a universal approximator for energy potential functions. By incorporating a fully automated training process we have been able to train smooth, differentiable, and predictive potential functions on large-scale crystal structures. A variety of tests have also been performed to show the superiority and versatility of the machine-learned model.
Given the emerging global threat of antimicrobial resistance, new methods for next-generation antimicrobial design are urgently needed. We report a peptide generation framework PepCVAE, based on a semi-supervised variational autoencoder (VAE) model, for designing novel antimicrobial peptide (AMP) sequences. Our model learns a rich latent space of the biological peptide context by taking advantage of abundant, unlabeled peptide sequences. The model further learns a disentangled antimicrobial attribute space by using the feedback from a jointly trained AMP classifier that uses limited labeled instances. The disentangled representation allows for controllable generation of AMPs. Extensive analysis of the PepCVAE-generated sequences reveals superior performance of our model in comparison to a plain VAE, as PepCVAE generates novel AMP sequences with higher long-range diversity, while being closer to the training distribution of biological peptides. These features are highly desired in next-generation antimicrobial design.
Early prediction of cerebral palsy is essential as it leads to early treatment and monitoring. Deep learning has shown promising results in biomedical engineering thanks to its capacity of modelling complicated data with its non-linear architecture. However, due to their complex structure, deep learning models are generally not interpretable by humans, making it difficult for clinicians to rely on the findings. In this paper, we propose a channel attention module for deep learning models to predict cerebral palsy from infants body movements, which highlights the key features (i.e. body joints) the model identifies as important, thereby indicating why certain diagnostic results are found. To highlight the capacity of the deep network in modelling input features, we utilize raw joint positions instead of hand-crafted features. We validate our system with a real-world infant movement dataset. Our proposed channel attention module enables the visualization of the vital joints to this disease that the network considers. Our system achieves 91.67% accuracy, suppressing other state-of-the-art deep learning methods.
Accurately predicting the binding affinity between drugs and proteins is an essential step for computational drug discovery. Since graph neural networks (GNNs) have demonstrated remarkable success in various graph-related tasks, GNNs have been considered as a promising tool to improve the binding affinity prediction in recent years. However, most of the existing GNN architectures can only encode the topological graph structure of drugs and proteins without considering the relative spatial information among their atoms. Whereas, different from other graph datasets such as social networks and commonsense knowledge graphs, the relative spatial position and chemical bonds among atoms have significant impacts on the binding affinity. To this end, in this paper, we propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction. As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph. Moreover, we propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation. The hierarchical attentive aggregation can capture spatial dependencies among atoms, as well as fuse the position-enhanced information with the capability of discriminating multiple spatial relations among atoms. Finally, we conduct extensive experiments on two standard datasets to demonstrate the effectiveness of S-MAN.
Characters do not convey meaning, but sequences of characters do. We propose an unsupervised distributional method to learn the abstract meaning-bearing units in a sequence of characters. Rather than segmenting the sequence, this model discovers continuous representations of the objects in the sequence, using a recently proposed architecture for object discovery in images called Slot Attention. We train our model on different languages and evaluate the quality of the obtained representations with probing classifiers. Our experiments show promising results in the ability of our units to capture meaning at a higher level of abstraction.
Kahini Wadhawan
,Payel Das
,Barbara A. Han
.
(2021)
.
"Towards Interpreting Zoonotic Potential of Betacoronavirus Sequences With Attention"
.
Kahini Wadhawan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا