Do you want to publish a course? Click here

Robust narrow-gap semiconducting behavior in square-net La$_{3}$Cd$_{2}$As$_{6}$

83   0   0.0 ( 0 )
 Added by Mario Moda Piva
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

ABSTRACT: Narrow-gap semiconductors are sought-after materials due to their potential for long-wavelength detectors, thermoelectrics, and more recently non-trivial topology. Here we report the synthesis and characterization of a new family of narrow-gap semiconductors, $R$$_{3}$Cd$_{2}$As$_{6}$ ($R=$ La, Ce). Single crystal x-ray diffraction at room temperature reveals that the As square nets distort and Cd vacancies order in a monoclinic superstructure. A putative charge-density ordered state sets in at 279~K in La$_{3}$Cd$_{2}$As$_{6}$ and at 136~K in Ce$_{3}$Cd$_{2}$As$_{6}$ and is accompanied by a substantial increase in the electrical resistivity in both compounds. The resistivity of the La member increases by thirteen orders of magnitude on cooling, which points to a remarkably clean semiconducting ground state. Our results suggest that light square net materials within a $I4/mmm$ parent structure are promising clean narrow-gap semiconductors.



rate research

Read More

We present an extension and revision of the spectroscopic and structural data of the mixed stack charge transfer (CT) crystal 3,3$^prime$,5,5$^prime$-tetramethylbenzidine--tetrafluoro-tetracyanoquinodimethane (TMB-TCNQF$_4$), associated with new electric and dielectric measurements. Refinement of syncrotron structural data at low temperature have led to revise the previously reported [Phys. Rev. Mat. textbf{2}, 024602 (2018)] $C2/m$ structure. The revised structure is $P2_1/m$, with two dimerized stacks per unit cell, and is consistent with the vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K the structure presents an increasing degree of disorder mainly along the stack axis. This finds confirmation in the analysis of the anisotropic displacement parameters of the structure. TMB-TCNQF$_4$ is confirmed to be a narrow gap semiconductor ($E_a sim 0.3$ eV) with room $T$ conductivity of $sim 10^{-4}~ Omega^{-1}$ cm$^{-1}$, while dielectric measurement have evidenced a typical relaxor ferroelectric behavior already at room $T$, with a peak in real part of dielectric constant $epsilon(T, u)$ around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferrolectric nanodomains.
Here we investigate the thermodynamic and electronic properties of Eu$_{11}$InSb$_9$ single crystals. Electrical transport data show that Eu$_{11}$InSb$_9$ has a semiconducting ground state with a relatively narrow band gap of $320$~meV. Magnetic susceptibility data reveal antiferromagnetic order at low temperatures, whereas ferromagnetic interactions dominate at high temperature. Specific heat, magnetic susceptibility, and electrical resistivity measurements reveal three phase transitions at $T_{N1}=9.3$~K, $T_{N2} =8.3$~K, and $T_{N3} =4.3$~K. Unlike Eu$_{5}$In$_{2}$Sb$_6$, a related europium-containing Zintl compound, no colossal magnetoresistance (CMR) is observed in Eu$_{11}$InSb$_9$. We attribute the absence of CMR to the smaller carrier density and the larger distance between Eu ions and In-Sb polyhedra in Eu$_{11}$InSb$_9$. Our results indicate that Eu$_{11}$InSb$_9$ has potential applications as a thermoelectric material through doping or as a long-wavelength detector due to its narrow gap.
We have investigated the effects of structure change and electron correlation on SrTiO$_{3}$ single crystals using angle-resolved photoemission spectroscopy. We show that the cubic to tetragonal phase transition at 105$^circ$K is manifested by a charge transfer from in-plane ($d_{yz}$ and $d_{zx}$) bands to out-of-plane ($d_{xy}$) band, which is opposite to the theoretical predictions. Along this second-order phase transition, we find a smooth evolution of the quasiparticle strength and effective masses. The in-plane band exhibits a peak-dip-hump lineshape, indicating a high degree of correlation on a relatively large (170 meV) energy scale, which is attributed to the polaron formation.
New carbon forms exhibiting extraordinary physico-chemical properties can be generated from nanostructured precursors under extreme pressure. Nevertheless, synthesis of such fascinating materials is often not well understood that results, as is the case of C60 precursor, in irreproducibility of the results and impeding further progress in the materials design. Here the semiconducting amorphous carbon having bandgaps of 0.1-0.3 eV and the advantages of isotropic superhardness and superior toughness over single-crystal diamond and inorganic glasses are produced from transformation of fullerene at high pressure and moderate temperatures. A systematic investigation of the structure and bonding evolution was carried out by using rich arsenal of complimentary characterization methods, which helps to build a model of the transformation that can be used in further high p,T synthesis of novel nanocarbon systems for advanced applications. The produced amorphous carbon materials have the potential of demanding optoelectronic applications that diamond and graphene cannot achieve
The delicate balance between spin-orbit coupling, Coulomb repulsion and crystalline electric field interactions observed in Ir-based oxides is usually manifested as exotic magnetic behavior. Here we investigate the evolution of the exchange coupling between Co and Ir for partial La substitution by Ca in La$_{2}$CoIrO$_6$. A great advantage of the use of Ca$^{2+}$ as replacement for La$^{3+}$ is the similarity of its ionic radii. Thus, the observed magnetic changes can more easily be associated to electronic variations. A thorough investigation of the structural, electronic and magnetic properties of the La$_{2-x}$Ca$_{x}$CoIrO$_6$ system was carried out by means of synchrotron x-ray powder diffraction, muon spin rotation and relaxation ($mu$SR), AC and DC magnetization, XAS, XMCD, Raman spectroscopy, electrical resistivity and dielectric permittivity. Our XAS results show that up to 25% of Ca substitution at the La site results in the emergence of Co$^{3+}$, possibly in high spin state, while the introduction of larger amount of Ca leads to the increase of Ir valence. The competing magnetic interactions resulting from the mixed valences lead to a coexistence of a magnetically ordered and an emerging spin glass (SG) state for the doped samples. Our $mu$SR results indicate that for La$_{2}$CoIrO$_6$ a nearly constant fraction of a paramagnetic (PM) phase persists down to low temperature, possibly related to the presence of a small amount of Ir$^{3+}$ and to the anti-site disorder at Co/Ir sites. For the doped compounds the PM phase freezes below 30 K, but there is still some dynamics associated with the SG. The dielectric data obtained for the parent compound and the one with 25% of Ca-doping indicate a possible magnetodielectric effect, which is discussed in terms of the electron hopping between the TM ions, the anti-site disorder and the distorted crystalline structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا