Do you want to publish a course? Click here

WRICNet:A Weighted Rich-scale Inception Coder Network for Multi-Resolution Remote Sensing Image Change Detection

108   0   0.0 ( 0 )
 Added by Jiang Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Majority models of remote sensing image changing detection can only get great effect in a specific resolution data set. With the purpose of improving change detection effectiveness of the model in the multi-resolution data set, a weighted rich-scale inception coder network (WRICNet) is proposed in this article, which can make a great fusion of shallow multi-scale features, and deep multi-scale features. The weighted rich-scale inception module of the proposed can obtain shallow multi-scale features, the weighted rich-scale coder module can obtain deep multi-scale features. The weighted scale block assigns appropriate weights to features of different scales, which can strengthen expressive ability of the edge of the changing area. The performance experiments on the multi-resolution data set demonstrate that, compared to the comparative methods, the proposed can further reduce the false alarm outside the change area, and the missed alarm in the change area, besides, the edge of the change area is more accurate. The ablation study of the proposed shows that the training strategy, and improvements of this article can improve the effectiveness of change detection.



rate research

Read More

91 - Jun Gu , Guangluan Xu , Yue Zhang 2018
Recently, deep convolutional neural networks (CNNs) have obtained promising results in image processing tasks including super-resolution (SR). However, most CNN-based SR methods treat low-resolution (LR) inputs and features equally across channels, rarely notice the loss of information flow caused by the activation function and fail to leverage the representation ability of CNNs. In this letter, we propose a novel single-image super-resolution (SISR) algorithm named Wider Channel Attention Network (WCAN) for remote sensing images. Firstly, the channel attention mechanism is used to adaptively recalibrate the importance of each channel at the middle of the wider attention block (WAB). Secondly, we propose the Local Memory Connection (LMC) to enhance the information flow. Finally, the features within each WAB are fused to take advantage of the networks representation capability and further improve information and gradient flow. Analytic experiments on a public remote sensing data set (UC Merced) show that our WCAN achieves better accuracy and visual improvements against most state-of-the-art methods.
154 - Lingyi Liu , Yunpeng Bai , 2020
Ship detection has been an active and vital topic in the field of remote sensing for a decade, but it is still a challenging problem due to the large scale variations, the high aspect ratios, the intensive arrangement, and the background clutter disturbance. In this letter, we propose a locality-aware rotated ship detection (LARSD) framework based on a multi-scale convolutional neural network (CNN) to tackle these issues. The proposed framework applies a UNet-like multi-scale CNN to generate multi-scale feature maps with high-level semantic information in high resolution. Then, a rotated anchor-based regression is applied for directly predicting the probability, the edge distances, and the angle of ships. Finally, a locality-aware score alignment is proposed to fix the mismatch between classification results and location results caused by the independence of each subnet. Furthermore, to enlarge the datasets of ship detection, we build a new high-resolution ship detection (HRSD) dataset, where 2499 images and 9269 instances were collected from Google Earth with different resolutions. Experiments based on public dataset HRSC2016 and our HRSD dataset demonstrate that our detection method achieves state-of-the-art performance.
Change detection for remote sensing images is widely applied for urban change detection, disaster assessment and other fields. However, most of the existing CNN-based change detection methods still suffer from the problem of inadequate pseudo-changes suppression and insufficient feature representation. In this work, an unsupervised change detection method based on Task-related Self-supervised Learning Change Detection network with smooth mechanism(TSLCD) is proposed to eliminate it. The main contributions include: (1) the task-related self-supervised learning module is introduced to extract spatial features more effectively. (2) a hard-sample-mining loss function is applied to pay more attention to the hard-to-classify samples. (3) a smooth mechanism is utilized to remove some of pseudo-changes and noise. Experiments on four remote sensing change detection datasets reveal that the proposed TSLCD method achieves the state-of-the-art for change detection task.
70 - Junzheng Wu , Biao Li , Yao Qin 2021
Change detection (CD) in remote sensing images has been an ever-expanding area of research. To date, although many methods have been proposed using various techniques, accurately identifying changes is still a great challenge, especially in the high resolution or heterogeneous situations, due to the difficulties in effectively modeling the features from ground objects with different patterns. In this paper, a novel CD method based on the graph convolutional network (GCN) and multiscale object-based technique is proposed for both homogeneous and heterogeneous images. First, the object-wise high level features are obtained through a pre-trained U-net and the multiscale segmentations. Treating each parcel as a node, the graph representations can be formed and then, fed into the proposed multiscale graph convolutional network with each channel corresponding to one scale. The multiscale GCN propagates the label information from a small number of labeled nodes to the other ones which are unlabeled. Further, to comprehensively incorporate the information from the output channels of multiscale GCN, a fusion strategy is designed using the father-child relationships between scales. Extensive Experiments on optical, SAR and heterogeneous optical/SAR data sets demonstrate that the proposed method outperforms some state-of the-art methods in both qualitative and quantitative evaluations. Besides, the Influences of some factors are also discussed.
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are on the one hand rare and on the other hand their appearance is varied and diffuse, making it hard to collect a representative training set in advance. In the active learning setting, one starts from a minimal set of training examples and progressively chooses informative samples that are annotated by a user and added to the training set. Hence, a core component of an active learning system is a mechanism to estimate model uncertainty, which is then used to pick uncertain, informative samples. We study different mechanisms to capture and quantify this uncertainty when working with deep networks, based on the variance or entropy across explicit or implicit model ensembles. We show that active learning successfully finds highly informative samples and automatically balances the training distribution, and reaches the same performance as a model supervised with a large, pre-annotated training set, with $approx$99% fewer annotated samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا