No Arabic abstract
Change detection (CD) in remote sensing images has been an ever-expanding area of research. To date, although many methods have been proposed using various techniques, accurately identifying changes is still a great challenge, especially in the high resolution or heterogeneous situations, due to the difficulties in effectively modeling the features from ground objects with different patterns. In this paper, a novel CD method based on the graph convolutional network (GCN) and multiscale object-based technique is proposed for both homogeneous and heterogeneous images. First, the object-wise high level features are obtained through a pre-trained U-net and the multiscale segmentations. Treating each parcel as a node, the graph representations can be formed and then, fed into the proposed multiscale graph convolutional network with each channel corresponding to one scale. The multiscale GCN propagates the label information from a small number of labeled nodes to the other ones which are unlabeled. Further, to comprehensively incorporate the information from the output channels of multiscale GCN, a fusion strategy is designed using the father-child relationships between scales. Extensive Experiments on optical, SAR and heterogeneous optical/SAR data sets demonstrate that the proposed method outperforms some state-of the-art methods in both qualitative and quantitative evaluations. Besides, the Influences of some factors are also discussed.
Semantic change detection (SCD) extends the multi-class change detection (MCD) task to provide not only the change locations but also the detailed land-cover/land-use (LCLU) categories before and after the observation intervals. This fine-grained semantic change information is very useful in many applications. Recent studies indicate that the SCD can be modeled through a triple-branch Convolutional Neural Network (CNN), which contains two temporal branches and a change branch. However, in this architecture, the communications between the temporal branches and the change branch are insufficient. To overcome the limitations in existing methods, we propose a novel CNN architecture for the SCD, where the semantic temporal features are merged in a deep CD unit. Furthermore, we elaborate on this architecture to reason the bi-temporal semantic correlations. The resulting Bi-temporal Semantic Reasoning Network (Bi-SRNet) contains two types of semantic reasoning blocks to reason both single-temporal and cross-temporal semantic correlations, as well as a novel loss function to improve the semantic consistency of change detection results. Experimental results on a benchmark dataset show that the proposed architecture obtains significant accuracy improvements over the existing approaches, while the added designs in the Bi-SRNet further improves the segmentation of both semantic categories and the changed areas. The codes in this paper are accessible at: github.com/ggsDing/Bi-SRNet.
Computerized detection of colonic polyps remains an unsolved issue because of the wide variation in the appearance, texture, color, size, and presence of the multiple polyp-like imitators during colonoscopy. In this paper, we propose a deep convolutional neural network based model for the computerized detection of polyps within colonoscopy images. The proposed model comprises 16 convolutional layers with 2 fully connected layers, and a Softmax layer, where we implement a unique approach using different convolutional kernels within the same hidden layer for deeper feature extraction. We applied two different activation functions, MISH and rectified linear unit activation functions for deeper propagation of information and self regularized smooth non-monotonicity. Furthermore, we used a generalized intersection of union, thus overcoming issues such as scale invariance, rotation, and shape. Data augmentation techniques such as photometric and geometric distortions are adapted to overcome the obstacles faced in polyp detection. Detailed benchmarked results are provided, showing better performance in terms of precision, sensitivity, F1- score, F2- score, and dice-coefficient, thus proving the efficacy of the proposed model.
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20
The vast amount of unlabeled multi-temporal and multi-sensor remote sensing data acquired by the many Earth Observation satellites present a challenge for change detection. Recently, many generative model-based methods have been proposed for remote sensing image change detection on such unlabeled data. However, the high diversities in the learned features weaken the discrimination of the relevant change indicators in unsupervised change detection tasks. Moreover, these methods lack research on massive archived images. In this work, a self-supervised change detection approach based on an unlabeled multi-view setting is proposed to overcome this limitation. This is achieved by the use of a multi-view contrastive loss and an implicit contrastive strategy in the feature alignment between multi-view images. In this approach, a pseudo-Siamese network is trained to regress the output between its two branches pre-trained in a contrastive way on a large dataset of multi-temporal homogeneous or heterogeneous image patches. Finally, the feature distance between the outputs of the two branches is used to define a change measure, which can be analyzed by thresholding to get the final binary change map. Experiments are carried out on five homogeneous and heterogeneous remote sensing image datasets. The proposed SSL approach is compared with other supervised and unsupervised state-of-the-art change detection methods. Results demonstrate both improvements over state-of-the-art unsupervised methods and that the proposed SSL approach narrows the gap between unsupervised and supervised change detection.
Object detection in optical remote sensing images is an important and challenging task. In recent years, the methods based on convolutional neural networks have made good progress. However, due to the large variation in object scale, aspect ratio, and arbitrary orientation, the detection performance is difficult to be further improved. In this paper, we discuss the role of discriminative features in object detection, and then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy from three aspects: building powerful feature representation, refining preset anchors, and optimizing label assignment. Specifically, we first decouple the classification and regression features, and then construct robust critical features adapted to the respective tasks through the Polarization Attention Module (PAM). With the extracted discriminative regression features, the Rotation Anchor Refinement Module (R-ARM) performs localization refinement on preset horizontal anchors to obtain superior rotation anchors. Next, the Dynamic Anchor Learning (DAL) strategy is given to adaptively select high-quality anchors based on their ability to capture critical features. The proposed framework creates more powerful semantic representations for objects in remote sensing images and achieves high-performance real-time object detection. Experimental results on three remote sensing datasets including HRSC2016, DOTA, and UCAS-AOD show that our method achieves superior detection performance compared with many state-of-the-art approaches. Code and models are available at https://github.com/ming71/CFC-Net.