Do you want to publish a course? Click here

A MeerKAT 1.28 GHz Atlas of Southern Sources in the IRAS Revised Bright Galaxy Sample

78   0   0.0 ( 0 )
 Added by J. J. Condon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IRAS Revised Bright Galaxy Sample (RBGS) comprises galaxies and unresolved mergers stronger than $S = 5.24$ Jy at $lambda = 60~mumathrm{m}$ with galactic latitudes $vert b vert > 5^circ$. Nearly all are dusty star-forming galaxies whose radio continuum and far-infrared luminosities are proportional to their current rates of star formation. We used the MeerKAT array of 64 dishes to make $5 times 3$ min snapshot observations at $ u = 1.28$ GHz covering all 298 southern (J2000 $delta < 0^circ$) RBGS sources identified with external galaxies. The resulting images have $theta approx 7.5$ arcsec FHWM resolution and rms fluctuations $sigma approx 20~mumathrm{Jy~beam}^{-1} approx 0.26$ K, low enough to reveal even faint disk emission. The rms position uncertainties are $sigma_alpha approx sigma_delta approx 1$ arcsec relative to accurate near-infrared positions, and the image dynamic ranges are DR $gtrsim 10^4:1$.



rate research

Read More

284 - T. Mauch 2019
We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $approx 68$ FWHM primary beam area with $7.6$ FWHM resolution and $0.55 pm 0.01$ $mu$Jy/beam rms noise. Its J2000 center position $alpha=04^h 13^m 26.4^s$, $delta=-80^circ 00 00$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $mu$Jy with counts of individual DEEP2 sources between $10$ $mu$Jy and $2.5$ mJy. Most sources fainter than $S sim 100$ $mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $mu$Jy account for $sim93%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 lesssim log[S(mathrm{Jy})] lesssim -4$.
IRAS flux densities, redshifts, and infrared luminosities are reported for all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a complete flux-limited survey of all extragalactic objects with total 60 micron flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median (mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were compiled before the final (Pass 3) calibration of the IRAS Level 1 Archive in May 1990. The RBGS also makes use of more accurate and consistent automated methods to measure the flux of objects with extended emission. Basic properties of the RBGS sources are summarized, including estimated total infrared luminosities, as well as updates to cross-identifications with sources from optical galaxy catalogs established using the NASA/IPAC Extragalactic Database (NED). In addition, an atlas of images from the Digitized Sky Survey with overlays of the IRAS position uncertainty ellipse and annotated scale bars is provided for ease in visualizing the optical morphology in context with the angular and metric size of each object. The revised bolometric infrared luminosity function, phi(L_ir), for infrared bright galaxies in the local Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the characteristic infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively. (Abridged)
We present X-ray data for a complete sample of 44 luminous infrared galaxies (LIRGs), obtained with the Chandra X-ray Observatory. These are the X-ray observations of the high luminosity portion of the Great Observatory All-sky LIRG Survey (GOALS), which includes the most luminous infrared selected galaxies, log (Lir/Lsun) > 11.73, in the local universe, z < 0.088. X-rays were detected from 43 out of 44 objects, and their arcsec-resolution images, spectra, and radial brightness distributions are presented. With a selection by hard X-ray colour and the 6.4 keV iron line, AGN are found in 37% of the objects, with higher luminosity sources more likely to contain an AGN. These AGN also tend to be found in late-stage mergers. The AGN fraction would increase to 48% if objects with mid-IR [Ne V] detection are included. Double AGN are clearly detected only in NGC 6240 among 24 double/triple systems. Other AGN are found either in single nucleus objects or in one of the double nuclei at similar rates. Objects without conventional X-ray signatures of AGN appear to be hard X-ray quiet, relative to the X-ray to far-IR correlation for starburst galaxies, as discussed elsewhere. Most objects also show extended soft X-ray emission, which is likely related to an outflow from the nuclear region, with a metal abundance pattern suggesting enrichment by core collapse supernovae, as expected for a starburst.
Verifying that sub-mm galaxies (SMGs) are gravitationally lensed requires time-expensive observations with over-subscribed high-resolution observatories. Here, we aim to strengthen the evidence of gravitational lensing within the Herschel Bright Sources (HerBS) by cross-comparing their positions to optical (SDSS) and near-infrared (VIKING) surveys, in order to search for the foreground lensing galaxy candidates. Resolved observations of the brightest HerBS sources have already shown that most are lensed, and a galaxy evolution model predicts that $sim$76% of the total HerBS sources are lensed, although with the SDSS survey we are only able to identify the likely foreground lenses for 25% of the sources. With the near-infrared VIKING survey, however, we are able to identify the likely foreground lenses for 57% of the sources, and we estimate that 82% of the HerBS sources have lenses on the VIKING images even if we cannot identify the lens in every case. We find that the angular offsets between lens and Herschel source are larger than that expected if the lensing is done by individual galaxies. We also find that the fraction of HerBS sources that are lensed falls with decreasing 500-micron flux density, which is expected from the galaxy evolution model. Finally, we apply our statistical VIKING cross-identification to the entire Herschel-ATLAS catalogue, where we also find that the number of lensed sources falls with decreasing 500-micron flux density.
We present a Revised IRAS-FSC Redshift Catalogue (RIFSCz) of 60,303 galaxies selected at 60 microns from the IRAS Faint Source Catalogue (FSC). This revision merges in data from the WISE All-Sky Data Release, the Tenth SDSS Data Release (DR10), the GALEX All-Sky Survey Source Catalog (GASC), the 2MASS Redshift Survey (2MRS) and the Planck Catalogue of Compact Sources (PCCS). The RIFSCz consists of accurate position, ultra-violet (UV), optical, near-, mid- and far-infrared, sub-millimetre (sub-mm) and/or radio identifications, spectroscopic redshift (if available) or photometric redshift (if possible), predicted far-infrared and sub-mm fluxes ranging from 12 to 1380 microns based upon the best-fit infrared template. We also provide stellar masses, star-formation rates and dust masses derived from the optical and infrared template fits, where possible. 56 of the galaxies in the RIFSCz have spectroscopic redshifts and a further 26 have photometric redshifts obtained through the template-fitting method. At S60 > 0.36 Jy, the 90% completeness limit of the FSC, 93 of the sources in the RIFSCz have either spectroscopic or photometric redshifts. An interesting subset of the catalogue is the sources detected by Planck at sub-mm wavelengths. 1200 sources have a detection at better than 5 sigma in at least one Planck band and a further 1186 sources have detections at 3-5 sigma in at least one Planck band.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا