Do you want to publish a course? Click here

C-GOALS: Chandra observations of a complete sample of luminous infrared galaxies from the IRAS Revised Bright Galaxy Survey

141   0   0.0 ( 0 )
 Added by Kazushi Iwasawa
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray data for a complete sample of 44 luminous infrared galaxies (LIRGs), obtained with the Chandra X-ray Observatory. These are the X-ray observations of the high luminosity portion of the Great Observatory All-sky LIRG Survey (GOALS), which includes the most luminous infrared selected galaxies, log (Lir/Lsun) > 11.73, in the local universe, z < 0.088. X-rays were detected from 43 out of 44 objects, and their arcsec-resolution images, spectra, and radial brightness distributions are presented. With a selection by hard X-ray colour and the 6.4 keV iron line, AGN are found in 37% of the objects, with higher luminosity sources more likely to contain an AGN. These AGN also tend to be found in late-stage mergers. The AGN fraction would increase to 48% if objects with mid-IR [Ne V] detection are included. Double AGN are clearly detected only in NGC 6240 among 24 double/triple systems. Other AGN are found either in single nucleus objects or in one of the double nuclei at similar rates. Objects without conventional X-ray signatures of AGN appear to be hard X-ray quiet, relative to the X-ray to far-IR correlation for starburst galaxies, as discussed elsewhere. Most objects also show extended soft X-ray emission, which is likely related to an outflow from the nuclear region, with a metal abundance pattern suggesting enrichment by core collapse supernovae, as expected for a starburst.



rate research

Read More

We analyze Chandra X-ray observatory data for a sample of 63 luminous infrared galaxies (LIRGs), sampling the lower-infrared luminosity range of the Great Observatories All-Sky LIRG survey (GOALS), which includes the most luminous infrared selected galaxies in the local universe. X-rays are detected for 84 individual galaxies within the 63 systems, for which arcsecond resolution X-ray images, fluxes, infrared and X-ray luminosities, spectra and radial profiles are presented. Using X-ray and MIR selection criteria, we find AGN in (31$pm$5)% of the galaxy sample, compared to the (38$pm$6)% previously found for GOALS galaxies with higher infrared luminosities (C-GOALS I). Using mid-infrared data, we find that (59$pm$9)% of the X-ray selected AGN in the full C-GOALS sample do not contribute significantly to the bolometric luminosity of the host galaxy. Dual AGN are detected in two systems, implying a dual AGN fraction in systems that contain at least one AGN of (29$pm$14)%, compared to the (11$pm$10)% found for the C-GOALS I sample. Through analysis of radial profiles, we derive that most sources, and almost all AGN, in the sample are compact, with half of the soft X-ray emission generated within the inner $sim 1$ kpc. For most galaxies, the soft X-ray sizes of the sources are comparable to those of the MIR emission. We also find that the hard X-ray faintness previously reported for the bright C-GOALS I sources is also observed in the brightest LIRGs within the sample, with $L_{rm FIR}>8times10^{10}$ L$_{odot}$.
IRAS flux densities, redshifts, and infrared luminosities are reported for all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a complete flux-limited survey of all extragalactic objects with total 60 micron flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median (mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were compiled before the final (Pass 3) calibration of the IRAS Level 1 Archive in May 1990. The RBGS also makes use of more accurate and consistent automated methods to measure the flux of objects with extended emission. Basic properties of the RBGS sources are summarized, including estimated total infrared luminosities, as well as updates to cross-identifications with sources from optical galaxy catalogs established using the NASA/IPAC Extragalactic Database (NED). In addition, an atlas of images from the Digitized Sky Survey with overlays of the IRAS position uncertainty ellipse and annotated scale bars is provided for ease in visualizing the optical morphology in context with the angular and metric size of each object. The revised bolometric infrared luminosity function, phi(L_ir), for infrared bright galaxies in the local Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the characteristic infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively. (Abridged)
Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with $L_{rm IR}>10^{13}$L$_odot$. They are thought to be closer counterparts of the more distant sub-mm galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep $Chandra$ observations of IRAS~F15307+3252 (100ks), a classical HyLIRG located at $z=$0.93 and hosting a radio-loud AGN ($L_{rm 1.4 GHz}sim3.5times10^{25}$ W/Hz). The $Chandra$ images reveal the presence of extended ($r=160$ kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature ($sim2$ keV) and bolometric X-ray luminosity ($sim3times10^{43}$ erg s$^{-1}$) of the gas follow the expected $L_{rm X-ray}-T$ correlation for groups and clusters, and that the gas has a remarkably short cooling time of $1.2$ Gyrs. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe K$alpha$ line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an over-density of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS~F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.
We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$le$z$le$0.3 observed with $Chandra$. We investigate the luminosity-mass ($LM$) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the $LM$ relation, and find that the $LM$ relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2$pm$0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the $LM$ relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the $Y_{X}$ parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.
132 - S. Haan , J.A. Surace , L. Armus 2010
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا