Do you want to publish a course? Click here

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay

103   0   0.0 ( 0 )
 Added by Tianhong Dai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hindsight experience replay (HER) is a goal relabelling technique typically used with off-policy deep reinforcement learning algorithms to solve goal-oriented tasks; it is well suited to robotic manipulation tasks that deliver only sparse rewards. In HER, both trajectories and transitions are sampled uniformly for training. However, not all of the agents experiences contribute equally to training, and so naive uniform sampling may lead to inefficient learning. In this paper, we propose diversity-based trajectory and goal selection with HER (DTGSH). Firstly, trajectories are sampled according to the diversity of the goal states as modelled by determinantal point processes (DPPs). Secondly, transitions with diverse goal states are selected from the trajectories by using k-DPPs. We evaluate DTGSH on five challenging robotic manipulation tasks in simulated robot environments, where we show that our method can learn more quickly and reach higher performance than other state-of-the-art approaches on all tasks.

rate research

Read More

Efficient learning in the environment with sparse rewards is one of the most important challenges in Deep Reinforcement Learning (DRL). In continuous DRL environments such as robotic arms control, Hindsight Experience Replay (HER) has been shown an effective solution. However, due to the brittleness of deterministic methods, HER and its variants typically suffer from a major challenge for stability and convergence, which significantly affects the final performance. This challenge severely limits the applicability of such methods to complex real-world domains. To tackle this challenge, in this paper, we propose Soft Hindsight Experience Replay (SHER), a novel approach based on HER and Maximum Entropy Reinforcement Learning (MERL), combining the failed experiences reuse and maximum entropy probabilistic inference model. We evaluate SHER on Open AI Robotic manipulation tasks with sparse rewards. Experimental results show that, in contrast to HER and its variants, our proposed SHER achieves state-of-the-art performance, especially in the difficult HandManipulation tasks. Furthermore, our SHER method is more stable, achieving very similar performance across different random seeds.
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task.
321 - Rui Yang , Meng Fang , Lei Han 2021
Solving multi-goal reinforcement learning (RL) problems with sparse rewards is generally challenging. Existing approaches have utilized goal relabeling on collected experiences to alleviate issues raised from sparse rewards. However, these methods are still limited in efficiency and cannot make full use of experiences. In this paper, we propose Model-based Hindsight Experience Replay (MHER), which exploits experiences more efficiently by leveraging environmental dynamics to generate virtual achieved goals. Replacing original goals with virtual goals generated from interaction with a trained dynamics model leads to a novel relabeling method, emph{model-based relabeling} (MBR). Based on MBR, MHER performs both reinforcement learning and supervised learning for efficient policy improvement. Theoretically, we also prove the supervised part in MHER, i.e., goal-conditioned supervised learning with MBR data, optimizes a lower bound on the multi-goal RL objective. Experimental results in several point-based tasks and simulated robotics environments show that MHER achieves significantly higher sample efficiency than previous state-of-the-art methods.
95 - Rui Yang , Jiafei Lyu , Yu Yang 2021
Multi-goal reinforcement learning is widely applied in planning and robot manipulation. Two main challenges in multi-goal reinforcement learning are sparse rewards and sample inefficiency. Hindsight Experience Replay (HER) aims to tackle the two challenges via goal relabeling. However, HER-related works still need millions of samples and a huge computation. In this paper, we propose Multi-step Hindsight Experience Replay (MHER), incorporating multi-step relabeled returns based on $n$-step relabeling to improve sample efficiency. Despite the advantages of $n$-step relabeling, we theoretically and experimentally prove the off-policy $n$-step bias introduced by $n$-step relabeling may lead to poor performance in many environments. To address the above issue, two bias-reduced MHER algorithms, MHER($lambda$) and Model-based MHER (MMHER) are presented. MHER($lambda$) exploits the $lambda$ return while MMHER benefits from model-based value expansions. Experimental results on numerous multi-goal robotic tasks show that our solutions can successfully alleviate off-policy $n$-step bias and achieve significantly higher sample efficiency than HER and Curriculum-guided HER with little additional computation beyond HER.
Deep learning has achieved remarkable successes in solving challenging reinforcement learning (RL) problems when dense reward function is provided. However, in sparse reward environment it still often suffers from the need to carefully shape reward function to guide policy optimization. This limits the applicability of RL in the real world since both reinforcement learning and domain-specific knowledge are required. It is therefore of great practical importance to develop algorithms which can learn from a binary signal indicating successful task completion or other unshaped, sparse reward signals. We propose a novel method called competitive experience replay, which efficiently supplements a sparse reward by placing learning in the context of an exploration competition between a pair of agents. Our method complements the recently proposed hindsight experience replay (HER) by inducing an automatic exploratory curriculum. We evaluate our approach on the tasks of reaching various goal locations in an ant maze and manipulating objects with a robotic arm. Each task provides only binary rewards indicating whether or not the goal is achieved. Our method asymmetrically augments these sparse rewards for a pair of agents each learning the same task, creating a competitive game designed to drive exploration. Extensive experiments demonstrate that this method leads to faster converge and improved task performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا