Do you want to publish a course? Click here

Boosting Salient Object Detection with Transformer-based Asymmetric Bilateral U-Net

104   0   0.0 ( 0 )
 Added by Yun Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing salient object detection (SOD) methods mainly rely on CNN-based U-shaped structures with skip connections to combine the global contexts and local spatial details that are crucial for locating salient objects and refining object details, respectively. Despite great successes, the ability of CNN in learning global contexts is limited. Recently, the vision transformer has achieved revolutionary progress in computer vision owing to its powerful modeling of global dependencies. However, directly applying the transformer to SOD is suboptimal because the transformer lacks the ability to learn local spatial representations. To this end, this paper explores the combination of transformer and CNN to learn both global and local representations for SOD. We propose a transformer-based Asymmetric Bilateral U-Net (ABiU-Net). The asymmetric bilateral encoder has a transformer path and a lightweight CNN path, where the two paths communicate at each encoder stage to learn complementary global contexts and local spatial details, respectively. The asymmetric bilateral decoder also consists of two paths to process features from the transformer and CNN encoder paths, with communication at each decoder stage for decoding coarse salient object locations and find-grained object details, respectively. Such communication between the two encoder/decoder paths enables AbiU-Net to learn complementary global and local representations, taking advantage of the natural properties of transformer and CNN, respectively. Hence, ABiU-Net provides a new perspective for transformer-based SOD. Extensive experiments demonstrate that ABiU-Net performs favorably against previous state-of-the-art SOD methods. The code will be released.



rate research

Read More

The transformer networks are particularly good at modeling long-range dependencies within a long sequence. In this paper, we conduct research on applying the transformer networks for salient object detection (SOD). We adopt the dense transformer backbone for fully supervised RGB image based SOD, RGB-D image pair based SOD, and weakly supervised SOD within a unified framework based on the observation that the transformer backbone can provide accurate structure modeling, which makes it powerful in learning from weak labels with less structure information. Further, we find that the vision transformer architectures do not offer direct spatial supervision, instead encoding position as a feature. Therefore, we investigate the contributions of two strategies to provide stronger spatial supervision through the transformer layers within our unified framework, namely deep supervision and difficulty-aware learning. We find that deep supervision can get gradients back into the higher level features, thus leads to uniform activation within the same semantic object. Difficulty-aware learning on the other hand is capable of identifying the hard pixels for effective hard negative mining. We also visualize features of conventional backbone and transformer backbone before and after fine-tuning them for SOD, and find that transformer backbone encodes more accurate object structure information and more distinct semantic information within the lower and higher level features respectively. We also apply our model to camouflaged object detection (COD) and achieve similar observations as the above three SOD tasks. Extensive experimental results on various SOD and COD tasks illustrate that transformer networks can transform SOD and COD, leading to new benchmarks for each related task. The source code and experimental results are available via our project page: https://github.com/fupiao1998/TrasformerSOD.
The fully convolutional network (FCN) has dominated salient object detection for a long period. However, the locality of CNN requires the model deep enough to have a global receptive field and such a deep model always leads to the loss of local details. In this paper, we introduce a new attention-based encoder, vision transformer, into salient object detection to ensure the globalization of the representations from shallow to deep layers. With the global view in very shallow layers, the transformer encoder preserves more local representations to recover the spatial details in final saliency maps. Besides, as each layer can capture a global view of its previous layer, adjacent layers can implicitly maximize the representation differences and minimize the redundant features, making that every output feature of transformer layers contributes uniquely for final prediction. To decode features from the transformer, we propose a simple yet effective deeply-transformed decoder. The decoder densely decodes and upsamples the transformer features, generating the final saliency map with less noise injection. Experimental results demonstrate that our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks by a large margin, with an average of 12.17% improvement in terms of Mean Absolute Error (MAE). Code will be available at https://github.com/OliverRensu/GLSTR.
Deep-learning based salient object detection methods achieve great improvements. However, there are still problems existing in the predictions, such as blurry boundary and inaccurate location, which is mainly caused by inadequate feature extraction and integration. In this paper, we propose a Multi-scale Edge-based U-shape Network (MEUN) to integrate various features at different scales to achieve better performance. To extract more useful information for boundary prediction, U-shape Edge Network modules are embedded in each decoder units. Besides, the additional down-sampling module alleviates the location inaccuracy. Experimental results on four benchmark datasets demonstrate the validity and reliability of the proposed method. Multi-scale Edge based U-shape Network also shows its superiority when compared with 15 state-of-the-art salient object detection methods.
Salient object detection is the pixel-level dense prediction task which can highlight the prominent object in the scene. Recently U-Net framework is widely used, and continuous convolution and pooling operations generate multi-level features which are complementary with each other. In view of the more contribution of high-level features for the performance, we propose a triplet transformer embedding module to enhance them by learning long-range dependencies across layers. It is the first to use three transformer encoders with shared weights to enhance multi-level features. By further designing scale adjustment module to process the input, devising three-stream decoder to process the output and attaching depth features to color features for the multi-modal fusion, the proposed triplet transformer embedding network (TriTransNet) achieves the state-of-the-art performance in RGB-D salient object detection, and pushes the performance to a new level. Experimental results demonstrate the effectiveness of the proposed modules and the competition of TriTransNet.
As moving objects always draw more attention of human eyes, the temporal motive information is always exploited complementarily with spatial information to detect salient objects in videos. Although efficient tools such as optical flow have been proposed to extract temporal motive information, it often encounters difficulties when used for saliency detection due to the movement of camera or the partial movement of salient objects. In this paper, we investigate the complimentary roles of spatial and temporal information and propose a novel dynamic spatiotemporal network (DS-Net) for more effective fusion of spatiotemporal information. We construct a symmetric two-bypass network to explicitly extract spatial and temporal features. A dynamic weight generator (DWG) is designed to automatically learn the reliability of corresponding saliency branch. And a top-down cross attentive aggregation (CAA) procedure is designed so as to facilitate dynamic complementary aggregation of spatiotemporal features. Finally, the features are modified by spatial attention with the guidance of coarse saliency map and then go through decoder part for final saliency map. Experimental results on five benchmarks VOS, DAVIS, FBMS, SegTrack-v2, and ViSal demonstrate that the proposed method achieves superior performance than state-of-the-art algorithms. The source code is available at https://github.com/TJUMMG/DS-Net.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا