No Arabic abstract
I search for the ground state structures of the kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ using first principles calculations. Group-theoretical analysis shows that there are seventeen different distortions that are possible due to the phonon instabilities at the $M$ $(frac{1}{2},0,0)$ and $L$ $(frac{1}{2},0,frac{1}{2})$ points in the Brilouin zone of the parent $P6/mmm$ phase of these materials. I generated these structures for the three compounds and performed full structural relaxations that minimize the atomic forces and lattice stresses. I find that the $Fmmm$ phase with the order parameter $M_1^+$ $(a,0,0)$ $+$ $L_2^-$ $(0,b,b)$ has the lowest energy among these possibilities in all three compounds. However, the $Fmmm$ exhibits a dynamical instability at its $Z$ $(0,0,1)$ point, which corresponds to the $A$ $(0,0,frac{1}{2})$ point in the parent $P6/mmm$ phase. Condensation of this instability leads to a base-centered orthorhombic structure with the space group $Cmcm$ and $4Q$ order parameter $M_1^+$ $(a,0,0)$ $+$ $L_2^-$ $(0,b,b)$ $+$ $A_6^+$ $(frac{1}{2}c,frac{-sqrt{3}}{2}c)$.
Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameric V atoms is accompanied by the stabilization of quasimolecular states, which gives rise to the opening of CDW gaps for the V-derived multibands lying around the Fermi level. This Jahn-Teller-like instability having the local lattice distortion and its derived quasimolecular states is a driving force of the CDW order. Specifically, the saddle points of multiple Dirac bands near the Fermi level, located at the $M$ point, are hybridized to disappear along the $k_z$ direction, therefore not supporting the widely accepted Peierls-like electronic instability due to Fermi surface nesting. It is further demonstrated that applied hydrostatic pressure significantly reduces the interlayer spacing to destabilize the quasimolecular states, leading to a disappearance of the CDW phase at a pressure of ${sim}$2 GPa. The presently proposed underlying mechanism of the CDW order in CsV$_3$Sb$_5$ can also be applicable to other isostructural kagome lattices such as KV$_3$Sb$_5$ and RbV$_3$Sb$_5$.
The kagome lattice is host to flat bands, topological electronic structures, Van Hove singularities and diverse electronic instabilities, providing an ideal platform for realizing highly tunable electronic states. Here, we report soft- and mechanical- point-contact spectroscopy (SPCS and MPCS) studies of the kagome superconductors KV$_3$Sb$_5$ and CsV$_3$Sb$_5$. Compared to the superconducting transition temperature $T_{rm c}$ from specific heat measurements (2.8~K for CsV$_3$Sb$_5$ and 1.0~K for KV$_3$Sb$_5$), significantly enhanced values of $T_{rm c}$ are observed via the zero-bias conductance of SPCS ($sim$4.2~K for CsV$_3$Sb$_5$ and $sim$1.8~K for KV$_3$Sb$_5$), which become further enhanced in MPCS measurements ($sim$5.0~K for CsV$_3$Sb$_5$ and $sim$3.1~K for KV$_3$Sb$_5$). While the differential conductance curves from SPCS are described by a two-gap $s$-wave model, a single $s$-wave gap reasonably captures the MPCS data, likely due to a diminishing spectral weight of the other gap. The enhanced superconductivity probably arises from local strain caused by the point-contact, which also leads to the evolution from two-gap to single-gap behaviors in different point-contacts. Our results demonstrate highly strain-sensitive superconductivity in kagome metals CsV$_3$Sb$_5$ and KV$_3$Sb$_5$, which may be harnessed in the manipulation of possible Majorana zero modes.
The kagome superconductor AV$_3$Sb$_5$ (A=K, Rb, Cs) is a rare platform to explore the interplay between topology, geometrical frustration and symmetry-breaking orders. In addition to the charge density wave below $T_{CDW}sim94$~K and superconductivity below $T_{SC}sim3$~K, recent surface sensitive studies of CsV$_3$Sb$_5$ find evidence of 1$times$4 superlattices below $T^{*}sim60$~K. Interestingly, this unidirectional $4a_0$ phase may intertwine with charge density wave and superconductivity and possibly responsible for spectroscopic and transport anomalies below $T^{*}$. Here, combining high-resolution X-ray diffraction and scanning tunneling microscopy, we demonstrate that the 1$times$4 superstructure emerges uniquely on the surface and hence exclude the $4a_0$ phase as the origin of $T^{*}$ anomaly in the bulk CsV$_3$Sb$_5$.
The family of metallic kagome compounds $A$V$_3$Sb$_5$ ($A$=K, Rb, Cs) was recently discovered to exhibit both superconductivity and charge order. The nature of the charge-density wave (CDW) phase is presently unsettled, which complicates the interpretation of the superconducting ground state. In this paper, we use group-theory and density-functional theory (DFT) to derive and solve a phenomenological Landau model for this CDW state. The DFT results reveal three unstable phonon modes with the same in-plane momentum but different out-of-plane momenta, whose frequencies depend strongly on the electronic temperature. This is indicative of an electronically-driven CDW, stabilized by features of the in-plane electronic dispersion. Motivated by the DFT analysis, we construct a Landau free-energy expansion for coupled CDW order parameters with wave-vectors at the $M$ and $L$ points of the hexagonal Brillouin zone. We find an unusual trilinear term coupling these different order parameters, which can promote the simultaneous condensation of both CDWs even if the two modes are not nearly-degenerate. We classify the different types of coupled multi-$bf{Q}$ CDW orders, focusing on those that break the sixfold rotational symmetry and lead to a unit-cell doubling along all three crystallographic directions, as suggested by experiments. We determine a region in parameter space, characterized by large nonlinear Landau coefficients, where these phases - dubbed staggered tri-hexagonal and staggered Star-of-David - are the leading instabilities of the system. Finally, we discuss the implications of our results for the kagome metals.
The Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV$_3$Sb$_5$ that is found to be intimately intertwined with the anomalous Hall effect and superconductivity. High-precision electronic structure determination is essential to understand the origin of the CDW transition and its interplay with electron correlation, topology and superconductivity, yet, little evidence has been found about the impact of the CDW state on the electronic structure in AV$_3$Sb$_5$. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission (ARPES) measurements on KV$_3$Sb$_5$. We have observed CDW-induced Fermi surface reconstruction and the associated band structure folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zone. The Fermi surface- and momentum-dependent CDW gap is measured for the first time and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface sheets. In particular, we have observed signatures of the electron-phonon coupling for all the V-derived bands. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV$_3$Sb$_5$ superconductors.