Do you want to publish a course? Click here

Demystifying the nonlocality problem in Aharonov-Bohm effect

67   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a novel semi-classical theory of the electrostatic and magnetostatic fields and explain the nonlocality problem in the context of the Aharonov-Bohm effect [1]. Specifically, we show that the electrostatic and the magnetostatic fields possess a quantum nature that manifests if certain conditions are met. In particular, the wave amplitudes of the fields are seen to exist even in the regions where the classical fields vanish and they operate on the electron wave functions locally as unitary phases. This formulation also sheds light on the quantisation of electric charges and magnetic flux.

rate research

Read More

Spinor fields are written in polar form so as to compute their tensorial connection, an object that contains the same information of the connection but which is also proven to be a real tensor. From this, one can still compute the Riemann curvature, encoding the information about gravity. But even in absence of gravity, when the Riemann curvature vanishes, it may still be possible that the tensorial connection remains different from zero, and this can have effects on matter. This is shown with examples in the two known integrable cases: the hydrogen atom and the harmonic oscillator. The fact that a spinor can feel effects due to sourceless actions is already known in electrodynamics as the Aharonov-Bohm phenomenon. A parallel between the electrodynamics case and the situation encountered here will be drawn. Some ideas about relativistic effects and their role for general treatments of quantum field theories are also underlined.
The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.
We present magnetotransport measurements in HgTe quantum well with inverted band structure, which expected to be a two-dimensional topological insulator having the bulk gap with helical gapless states at the edge. The negative magnetoresistance is observed in the local and nonlocal resistance configuration followed by the periodic oscillations damping with magnetic field. We attribute such behaviour to Aharonov-Bohm effect due to magnetic flux through the charge carrier puddles coupled to the helical edge states. The characteristic size of these puddles is about 100 nm.
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
57 - A M Stewart 2016
When the magnetic vector potential is expressed in terms of the magnetic field it, is found to be explicitly non-local in space. This gives support to the conclusions of Aharonov et al. in a recent comment, that the Aharonov-Bohm effect may be interpreted as being either due to a local gauge potential or else due to non-local gauge-invariant fields but not due to local gauge-invariant fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا