Do you want to publish a course? Click here

Energy, momentum, and angular momentum transport mediated by photons

91   0   0.0 ( 0 )
 Added by Tao Zhu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We set up a general microscopic theory for the transfer of energy, momentum, and angular momentum mediated by photons among arbitrary objects in vacuum together with the environment at infinity. Using the nonequilibrium Greens function for the electromagnetic field and the self energies (polarizability) representing the properties of materials, we derive Meir-Wingreen type formulas for the energy emitted, force, and torque experienced by the objects in a unified formalism. The theory is applied to transport problems of graphene edges under nonequilibrium conditions. We find that the energy radiation of graphene obeys the $T^4$ law with an emissivity of 2.058$%$ that is consistent with both theoretical and experimental work. To generate momentum and angular momentum radiation, potential bias is needed. The observed effects go beyond the predictions of fluctuational electrodynamics.



rate research

Read More

109 - Simon Streib 2020
In condensed matter systems it is necessary to distinguish between the momentum of the constituents of the system and the pseudomomentum of quasiparticles. The same distinction is also valid for angular momentum and pseudoangular momentum. Based on Noethers theorem, we demonstrate that the recently discussed orbital angular momenta of phonons and magnons are pseudoangular momenta. This conceptual difference is important for a proper understanding of the transfer of angular momentum in condensed matter systems, especially in spintronics applications.
Phonon modes in crystals can have angular momenta in general. It nevertheless cancels in equilibrium when the time-reversal symmetry is preserved. In this paper we show that when a temperature gradient is applied and heat current flows in the crystal, the phonon distribution becomes off-equilibrium, and a finite angular momentum is generated by the heat current. This mechanism is analogous to the Edelstein effect in electronic systems. This effect requires crystals with sufficiently low crystallographic symmetries, such as polar or chiral crystal structures. Because of the positive charges of the nuclei, this phonon angular momentum induces magnetization. In addition, when the crystal can freely rotate, this generated phonon angular momentum is converted to a rigidbody rotation of the crystal, due to the conservation of the total angular momentum. Furthermore, in metallic crystals, the phonon angular momentum will be partially converted into spin angular momentum of electrons.
84 - Kevin Belkacem 2019
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation profile of low-mass stars has been emphasized by asteroseimology and waves are among the potential candidates to do so. In this article, our objective is not to review all the literature related to the transport of angular momentum by waves but rather to emphasize the way it is to be computed in stellar models. We stress that to model wave transport of angular momentum is a non-trivial issue that requires to properly account for interactions between meridional circulation and waves. Also, while many authors only considered the effect of the wave momentum flux in the mean momentum equation, we show that this is an incomplete picture that prevents from grasping the main physics of the problem. We thus present the Transform Eulerian Formalism (TEM) which enable to properly address the problem.
Pseudospin, an additional degree of freedom inherent in graphene, plays a key role in understanding many fundamental phenomena such as the anomalous quantum Hall effect, electron chirality and Klein paradox. Unlike the electron spin, the pseudospin was traditionally considered as an unmeasurable quantity, immune to Stern-Gerlach-type experiments. Recently, however, it has been suggested that graphene pseudospin is a real angular momentum that might manifest itself as an observable quantity, but so far direct tests of such a momentum remained unfruitful. Here, by selective excitation of two sublattices of an artificial photonic graphene, we demonstrate pseudospin-mediated vortex generation and topological charge flipping in otherwise uniform optical beams with Bloch momentum traversing through the Dirac points. Corroborated by numerical solutions of the linear massless Dirac-Weyl equation, we show that pseudospin can turn into orbital angular momentum completely, thus upholding the belief that pseudospin is not merely for theoretical elegance but rather physically measurable.
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglement in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا