No Arabic abstract
Atomic vibrations play a vital role in the functions of various physical, chemical, and biological materials. The vibrational properties and the specific heat of a bulk material are well described by the Debye theory, which successfully predicts the quadratic $omega^{2}$ low-frequency scaling of the vibrational density of states (VDOS) in bulk solids from few fundamental assumptions. However, the corresponding relationships for nanoconfined materials with fewer degrees of freedom have been far less well explored. In this work, using inelastic neutron scattering, we characterize the VDOS of amorphous ice confined to a thickness of $approx 1$ nm inside graphene oxide membranes and we observe a crossover from the Debye $omega^2$ scaling to a novel and anomalous $omega^3$ behaviour upon reducing the confinement size $L$. Additionally, using molecular dynamics simulations, we not only confirm the experimental findings but also prove that such a novel scaling of the VDOS appears in both crystalline and amorphous solids under slab-confinement. Finally, we theoretically demonstrate that this low-frequency $omega^3$ law results from the geometric constraints on the momentum phase space induced by confinement along one spatial direction. This new physical phenomenon, revealed by combining theoretical, experimental and simulations results, is relevant to a myriad of systems both in synthetic and biological contexts and it could impact various technological applications for systems under confinement such as nano-devices or thin films.
The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structures unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials, which are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory calculates the exfoliation energy of each material and 681 monolayers are found to exhibit exfoliation energies below those of certain already-extant two-dimensional materials, indicating the possibility of exfoliating them from bulk phases. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other data for all 826 monolayers are provided at https://materialsweb.org .
We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin pumping technique. The sample structure is Ni-Fe|Cu|TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed, and enhanced with decreasing temperature in line with the dominated surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion.
The sub-gap density of states of amorphous indium gallium zinc oxide ($a$-IGZO) is obtained using the ultrabroadband photoconduction (UBPC) response of thin-film transistors (TFTs). Density functional theory simulations classify the origin of the measured sub-gap density of states peaks as a series of donor-like oxygen vacancy states and acceptor-like Zn vacancy states. Donor peaks are found both near the conduction band and deep in the sub-gap, with peak densities of $10^{17}-10^{18}$ cm$^{-3}$eV$^{-1}$. Two deep acceptor-like metal vacancy peaks with peak densities in the range of $10^{18}$ cm$^{-3}$eV$^{-1}$ and lie adjacent to the valance band Urbach tail region at 2.0 to 2.5 eV below the conduction band edge. By applying detailed charge balance, we show increasing the density of metal vacancy deep-acceptors strongly shifts the $a$-IGZO TFT threshold voltage to more positive values. Photoionization (h$ u$ > 2.0 eV) of metal vacancy acceptors is one cause of transfer curve hysteresis in $a$-IGZO TFTs owing to longer recombination lifetimes as they get captured into acceptor-like vacancies.
We use scanning tunneling microscopy (STM) to study charge density wave (CDW) states in the rare-earth di-telluride, CeTe$_{2}$. In contrast to previous experimental and first-principles studies of the rare-earth di-tellurides, our STM measurements surprisingly detect a unidirectional CDW with $textit{q}$ ~ 0.28 $textit{a}$*, which is very close to what is found in experimental measurements of the related rare-earth tri-tellurides. Furthermore, in the vicinity of an extended sub-surface defect, we find spatially-separated as well as spatially-coexisting unidirectional CDWs at the surface of CeTe$_{2}$. We quantify the nanoscale strain and its variations induced by this defect, and establish a correlation between local lattice strain and the locally-established CDW states. Our measurements probe the fundamental properties of a weakly-bound two-dimensional Te-sheet, which experimental and theoretical work has previously established as the fundamental component driving much of the essential physics in both the rare-earth di- and tri-telluride compounds.
Graphdiyne, atomically-thin 2D carbon nanostructure based on sp-sp2 hybridization, is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular precursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of on-surface synthesis. The formation of such 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion and carbon-based nanoelectronics.