No Arabic abstract
We investigate avalanches associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. Although qualitative aspects of yielding in silica are similar to other glasses, we find that the statistics of avalanches exhibits non-trivial behaviour. Investigating the statistics of avalanches and clusters in detail, we propose and verify a new relation between exponents characterizing the size distribution of avalanches and clusters. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localisation.
Many experiments over the past half century have shown that, for a range of protocols, granular materials compact under pressure and repeated small disturbances. A recent experiment on cyclically sheared spherical grains showed significant compaction via homogeneous crystallization (Rietz et al., 2018). Here we present numerical simulations of frictionless, purely repulsive spheres undergoing cyclic simple shear with dissipative Newtonian dynamics at fixed vertical load. We show that for sufficiently small strain amplitudes, cyclic shear gives rise to homogeneous crystallization at a volume fraction $phi = 0.646 pm 0.001$. This result indicates that neither friction nor gravity is essential for homogeneous crystallization in driven granular media.
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of particle motions is a multiple of the period of driving, but the reasons for this behavior have remained unclear. Motivated by mesoscopic features of displacement fields in experiments on jammed solids, we propose and analyze a simple model of interacting soft spots -- locations where particles rearrange under stress and that resemble two-level systems with hysteresis. We show that multiperiodic behavior can arise among just three or more soft spots that interact with each other, but in all cases it requires frustrated interactions, illuminating this otherwise elusive type of interaction. We suggest directions for seeking this signature of frustration in experiments and for achieving it in designed systems.
We study the influence of particle shape anisotropy on the occurrence of avalanches in sheared granular media. We use molecular dynamic simulations to calculate the relative movement of two tectonic plates. % with transform boundaries. Our model considers irregular polygonal particles constituting the material within the shear zone. We find that the magnitude of the avalanches is approximately independent on particle shape and in good agreement with the Gutenberg-Richter law, but the aftershock sequences are strongly influenced by the particle anisotropy yielding variations on the exponent characterizing the empirical Omoris law. Our findings enable one to identify the presence of anisotropic particles at the macro-mechanical level only by observing the avalanche sequences of real faults. In addition, we calculate the probability of occurrence of an avalanche for given values of stiffness or frictional strength and observe also a significant influence of the particle anisotropy.
Self-organization, and transitions from reversible to irreversible behaviour, of interacting particle assemblies driven by externally imposed stresses or deformation is of interest in comprehending diverse phenomena in soft matter. They have been investigated in a wide range of systems, such as colloidal suspensions, glasses, and granular matter. In different density and driving regimes, such behaviour is related to yielding of amorphous solids, jamming, and memory formation, emph{etc.} How these phenomena are related to each other has not, however, been much studied. In order to obtain a unified view of the different regimes of behaviour, and transitions between them, we investigate computationally the response of soft sphere assemblies to athermal cyclic shear deformation over a wide range of densities and amplitudes of shear deformation. Cyclic shear deformation induces transitions from reversible to irreversible behaviour in both unjammed and jammed soft sphere packings. Well above isotropic jamming density ($bf{phi_J}$), this transition corresponds to yielding. In the vicinity of the jamming point, up to a higher density limit we designate ${bf phi_J^{cyc}}$, an unjammed phase emerges between a localised, emph{absorbing} phase, and a diffusive, {emph irreversible} phase. The emergence of the unjammed phase signals the shifting of the jamming point to higher densities as a result of annealing, and opens a window where shear jamming becomes possible for frictionless packings. Below $bf{phi_J}$, two distinct localised states, termed point and loop reversibile, are observed. We characterise in detail the different regimes and transitions between them, and obtain a unified density-shear amplitude phase diagram.
One of the central problems of the liquid-glass transition is whether there is a structural signature that can qualitatively distinguish different dynamic behaviors at different degrees of supercooling. Here, we propose a novel structural characterization based on the spatial correlation of local density and we show the locally dense-packed structural environment has a direct link with the slow dynamics as well as dynamic heterogeneity in glass-formers. We find that particles with large local density relax slowly and the size of cluster formed by the dense-packed particles increases with decreasing the temperature. Moreover, the extracted static length scale shows clear correlation with the relaxation time at different degrees of supercooling. This suggests that the temporarily but continuously formed locally dense-packed structural environment may be the structural origin of slow dynamics and dynamic heterogeneity of the glass-forming liquids.