No Arabic abstract
We numerically construct a symmetric wormhole solution in pure Einstein gravity supported by a massive $3$-form field with a potential that contains a quartic self-interaction term. The wormhole spacetimes have only a single throat and they are everywhere regular and asymptotically flat. Furthermore, their mass and throat circumference increase almost linearly as the coefficient of the quartic self-interaction term $Lambda$ increases. The amount of violation of the null energy condition (NEC) is proportional to the magnitude of $3$-form, thus the NEC is less violated as $Lambda$ increases, since the magnitude of $3$-form decreases with $Lambda$. In addition, we investigate the geodesics of particles moving around the wormhole. The unstable photon orbit is located at the throat. We also find that the wormhole can cast a shadow whose apparent size is smaller than that cast by the Schwarzschild black hole, but reduces to it when $Lambda$ acquires a large value. The behavior of the innermost stable circular orbit around this wormhole is also discussed. The results of this paper hint toward the possibility that the 3-form wormholes could be potential black hole mimickers, as long as $Lambda$ is sufficiently large, precisely when NEC is weakly violated.
We construct the thin-shell wormhole solutions of novel four-dimensional Einstein-Gauss-Bonnet model and study their stability under radial linear perturbations. For positive Gauss-Bonnet coupling constant, the stable thin-shell wormhole can only be supported by exotic matter. For negative enough Gauss-Bonnet coupling constant, in asymptotic flat and AdS spacetime, there exists stable neutral thin-shell wormhole with normal matter which has finite throat radius. In asymptotic dS spacetime, there is no stable neutral thin-shell wormhole with normal matter. The charged thin-shell wormholes with normal matter exist in both flat, AdS and dS spacetime. Their throat radius can be arbitrarily small. However, when the charge is too large, the stable thin-shell wormhole can be supported only by exotic matter.
We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two massive fermions in a singlet spinor state, we show the existence of spherically symmetric asymptotically flat configurations which are free of singularities, representing localized states. These solutions satisfy a generalized Smarr relation, being connected with the extremal Reissner-Nordstrom black holes. They also possess a finite mass $M$ and electric charge $Q_e$, with $Q_e/M>1$. An exact wormhole solution with ungauged, massless fermions is also reported.
So-called regular black holes are a topic currently of considerable interest in the general relativity and astrophysics communities. Herein we investigate a particularly interesting regular black hole spacetime described by the line element [ ds^{2}=-left(1-frac{2m}{sqrt{r^{2}+a^{2}}}right)dt^{2}+frac{dr^{2}}{1-frac{2m}{sqrt{r^{2}+a^{2}}}} +left(r^{2}+a^{2}right)left(dtheta^{2}+sin^{2}theta ;dphi^{2}right). ] This spacetime neatly interpolates between the standard Schwarzschild black hole and the Morris-Thorne traversable wormhole; at intermediate stages passing through a black-bounce (into a future incarnation of the universe), an extremal null-bounce (into a future incarnation of the universe), and a traversable wormhole. As long as the parameter $a$ is non-zero the geometry is everywhere regular, so one has a somewhat unusual form of regular black hole, where the origin $r=0$ can be either spacelike, null, or timelike. Thus this spacetime generalizes and broadens the class of regular black holes beyond those usually considered.
The current interests in the universe motivate us to go beyond Einsteins General theory of relativity. One of the interesting proposals comes from a new class of teleparallel gravity named symmetric teleparallel gravity, i.e., $f(Q)$ gravity, where the non-metricity term $Q$ is accountable for fundamental interaction. These alternative modified theories of gravitys vital role are to deal with the recent interests and to present a realistic cosmological model. This manuscripts main objective is to study the traversable wormhole geometries in $f(Q)$ gravity. We construct the wormhole geometries for three cases: (i) by assuming a relation between the radial and lateral pressure, (ii) considering phantom energy equation of state (EoS), and (iii) for a specific shape function in the fundamental interaction of gravity (i.e. for linear form of $f(Q)$). Besides, we discuss two wormhole geometries for a general case of $f(Q)$ with two specific shape functions. Then, we discuss the viability of shape functions and the stability analysis of the wormhole solutions for each case. We have found that the null energy condition (NEC) violates each wormhole model which concluded that our outcomes are realistic and stable. Finally, we discuss the embedding diagrams and volume integral quantifier to have a complete view of wormhole geometries.
A possible candidate for the present accelerated expansion of the Universe is phantom energy, which possesses an equation of state of the form $omegaequiv p/rho<-1$, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. In this context, we shall construct phantom wormhole geometries by matching an interior wormhole solution, governed by the phantom energy equation of state, to an exterior vacuum at a junction interface. Several physical properties and characteristics of these solutions are further investigated. The dynamical stability of the transition layer of these phantom wormholes to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that the respective stable equilibrium configurations may be increased by strategically varying the wormhole throat radius.