Do you want to publish a course? Click here

Patch Attack Invariance: How Sensitive are Patch Attacks to 3D Pose?

174   0   0.0 ( 0 )
 Added by Nathan Drenkow
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Perturbation-based attacks, while not physically realizable, have been the main emphasis of adversarial machine learning (ML) research. Patch-based attacks by contrast are physically realizable, yet most work has focused on 2D domain with recent forays into 3D. Characterizing the robustness properties of patch attacks and their invariance to 3D pose is important, yet not fully elucidated, and is the focus of this paper. To this end, several contributions are made here: A) we develop a new metric called mean Attack Success over Transformations (mAST) to evaluate patch attack robustness and invariance; and B), we systematically assess robustness of patch attacks to 3D position and orientation for various conditions; in particular, we conduct a sensitivity analysis which provides important qualitative insights into attack effectiveness as a function of the 3D pose of a patch relative to the camera (rotation, translation) and sets forth some properties for patch attack 3D invariance; and C), we draw novel qualitative conclusions including: 1) we demonstrate that for some 3D transformations, namely rotation and loom, increasing the training distribution support yields an increase in patch success over the full range at test time. 2) We provide new insights into the existence of a fundamental cutoff limit in patch attack effectiveness that depends on the extent of out-of-plane rotation angles. These findings should collectively guide future design of 3D patch attacks and defenses.



rate research

Read More

State-of-the-art 3D human pose estimation approaches typically estimate pose from the entire RGB image in a single forward run. In this paper, we develop a post-processing step to refine 3D human pose estimation from body part patches. Using local patches as input has two advantages. First, the fine details around body parts are zoomed in to high resolution for preciser 3D pose prediction. Second, it enables the part appearance to be shared between poses to benefit rare poses. In order to acquire informative representation of patches, we explore different input modalities and validate the superiority of fusing predicted segmentation with RGB. We show that our method consistently boosts the accuracy of state-of-the-art 3D human pose methods.
Nowadays, general object detectors like YOLO and Faster R-CNN as well as their variants are widely exploited in many applications. Many works have revealed that these detectors are extremely vulnerable to adversarial patch attacks. The perturbed regions generated by previous patch-based attack works on object detectors are very large which are not necessary for attacking and perceptible for human eyes. To generate much less but more efficient perturbation, we propose a novel patch-based method for attacking general object detectors. Firstly, we propose a patch selection and refining scheme to find the pixels which have the greatest importance for attack and remove the inconsequential perturbations gradually. Then, for a stable ensemble attack, we balance the gradients of detectors to avoid over-optimizing one of them during the training phase. Our RPAttack can achieve an amazing missed detection rate of 100% for both Yolo v4 and Faster R-CNN while only modifies 0.32% pixels on VOC 2007 test set. Our code is available at https://github.com/VDIGPKU/RPAttack.
In this paper, we focus on estimating the 6D pose of objects in point clouds. Although the topic has been widely studied, pose estimation in point clouds remains a challenging problem due to the noise and occlusion. To address the problem, a novel 3DPVNet is presented in this work, which utilizes 3D local patches to vote for the object 6D poses. 3DPVNet is comprised of three modules. In particular, a Patch Unification (textbf{PU}) module is first introduced to normalize the input patch, and also create a standard local coordinate frame on it to generate a reliable vote. We then devise a Weight-guided Neighboring Feature Fusion (textbf{WNFF}) module in the network, which fuses the neighboring features to yield a semi-global feature for the center patch. WNFF module mines the neighboring information of a local patch, such that the representation capability to local geometric characteristics is significantly enhanced, making the method robust to a certain level of noise. Moreover, we present a Patch-level Voting (textbf{PV}) module to regress transformations and generates pose votes. After the aggregation of all votes from patches and a refinement step, the final pose of the object can be obtained. Compared to recent voting-based methods, 3DPVNet is patch-level, and directly carried out on point clouds. Therefore, 3DPVNet achieves less computation than point/pixel-level voting scheme, and has robustness to partial data. Experiments on several datasets demonstrate that 3DPVNet achieves the state-of-the-art performance, and is also robust against noise and occlusions.
Neural Networks require large amounts of memory and compute to process high resolution images, even when only a small part of the image is actually informative for the task at hand. We propose a method based on a differentiable Top-K operator to select the most relevant parts of the input to efficiently process high resolution images. Our method may be interfaced with any downstream neural network, is able to aggregate information from different patches in a flexible way, and allows the whole model to be trained end-to-end using backpropagation. We show results for traffic sign recognition, inter-patch relationship reasoning, and fine-grained recognition without using object/part bounding box annotations during training.
Although great progress has been made on adversarial attacks for deep neural networks (DNNs), their transferability is still unsatisfactory, especially for targeted attacks. There are two problems behind that have been long overlooked: 1) the conventional setting of $T$ iterations with the step size of $epsilon/T$ to comply with the $epsilon$-constraint. In this case, most of the pixels are allowed to add very small noise, much less than $epsilon$; and 2) usually manipulating pixel-wise noise. However, features of a pixel extracted by DNNs are influenced by its surrounding regions, and different DNNs generally focus on different discriminative regions in recognition. To tackle these issues, our previous work proposes a patch-wise iterative method (PIM) aimed at crafting adversarial examples with high transferability. Specifically, we introduce an amplification factor to the step size in each iteration, and one pixels overall gradient overflowing the $epsilon$-constraint is properly assigned to its surrounding regions by a project kernel. But targeted attacks aim to push the adversarial examples into the territory of a specific class, and the amplification factor may lead to underfitting. Thus, we introduce the temperature and propose a patch-wise++ iterative method (PIM++) to further improve transferability without significantly sacrificing the performance of the white-box attack. Our method can be generally integrated to any gradient-based attack methods. Compared with the current state-of-the-art attack methods, we significantly improve the success rate by 33.1% for defense models and 31.4% for normally trained models on average.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا