No Arabic abstract
In this paper, we focus on recognizing 3D shapes from arbitrary views, i.e., arbitrary numbers and positions of viewpoints. It is a challenging and realistic setting for view-based 3D shape recognition. We propose a canonical view representation to tackle this challenge. We first transform the original features of arbitrary views to a fixed number of view features, dubbed canonical view representation, by aligning the arbitrary view features to a set of learnable reference view features using optimal transport. In this way, each 3D shape with arbitrary views is represented by a fixed number of canonical view features, which are further aggregated to generate a rich and robust 3D shape representation for shape recognition. We also propose a canonical view feature separation constraint to enforce that the view features in canonical view representation can be embedded into scattered points in a Euclidean space. Experiments on the ModelNet40, ScanObjectNN, and RGBD datasets show that our method achieves competitive results under the fixed viewpoint settings, and significantly outperforms the applicable methods under the arbitrary view setting.
The goal of this paper is to compare surface-based and volumetric 3D object shape representations, as well as viewer-centered and object-centered reference frames for single-view 3D shape prediction. We propose a new algorithm for predicting depth maps from multiple viewpoints, with a single depth or RGB image as input. By modifying the network and the way models are evaluated, we can directly compare the merits of voxels vs. surfaces and viewer-centered vs. object-centered for familiar vs. unfamiliar objects, as predicted from RGB or depth images. Among our findings, we show that surface-based methods outperform voxel representations for objects from novel classes and produce higher resolution outputs. We also find that using viewer-centered coordinates is advantageous for novel objects, while object-centered representations are better for more familiar objects. Interestingly, the coordinate frame significantly affects the shape representation learned, with object-centered placing more importance on implicitly recognizing the object category and viewer-centered producing shape representations with less dependence on category recognition.
Three-dimensional (3D) shape recognition has drawn much research attention in the field of computer vision. The advances of deep learning encourage various deep models for 3D feature representation. For point cloud and multi-view data, two popular 3D data modalities, different models are proposed with remarkable performance. However the relation between point cloud and views has been rarely investigated. In this paper, we introduce Point-View Relation Network (PVRNet), an effective network designed to well fuse the view features and the point cloud feature with a proposed relation score module. More specifically, based on the relation score module, the point-single-view fusion feature is first extracted by fusing the point cloud feature and each single view feature with point-singe-view relation, then the point-multi-view fusion feature is extracted by fusing the point cloud feature and the features of different number of views with point-multi-view relation. Finally, the point-single-view fusion feature and point-multi-view fusion feature are further combined together to achieve a unified representation for a 3D shape. Our proposed PVRNet has been evaluated on ModelNet40 dataset for 3D shape classification and retrieval. Experimental results indicate our model can achieve significant performance improvement compared with the state-of-the-art models.
In 3D shape recognition, multi-view based methods leverage humans perspective to analyze 3D shapes and have achieved significant outcomes. Most existing research works in deep learning adopt handcrafted networks as backbones due to their high capacity of feature extraction, and also benefit from ImageNet pretraining. However, whether these network architectures are suitable for 3D analysis or not remains unclear. In this paper, we propose a neural architecture search method named Auto-MVCNN which is particularly designed for optimizing architecture in multi-view 3D shape recognition. Auto-MVCNN extends gradient-based frameworks to process multi-view images, by automatically searching the fusion cell to explore intrinsic correlation among view features. Moreover, we develop an end-to-end scheme to enhance retrieval performance through the trade-off parameter search. Extensive experimental results show that the searched architectures significantly outperform manually designed counterparts in various aspects, and our method achieves state-of-the-art performance at the same time.
We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project a distance field to a $4$D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in $3$D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.
Deep implicit functions (DIFs), as a kind of 3D shape representation, are becoming more and more popular in the 3D vision community due to their compactness and strong representation power. However, unlike polygon mesh-based templates, it remains a challenge to reason dense correspondences or other semantic relationships across shapes represented by DIFs, which limits its applications in texture transfer, shape analysis and so on. To overcome this limitation and also make DIFs more interpretable, we propose Deep Implicit Templates, a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations. Our key idea is to formulate DIFs as conditional deformations of a template implicit function. To this end, we propose Spatial Warping LSTM, which decomposes the conditional spatial transformation into multiple affine transformations and guarantees generalization capability. Moreover, the training loss is carefully designed in order to achieve high reconstruction accuracy while learning a plausible template with accurate correspondences in an unsupervised manner. Experiments show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.