Do you want to publish a course? Click here

Lattice-driven femtosecond magnon dynamics in $alpha$-MnTe

70   0   0.0 ( 0 )
 Added by Kira Deltenre
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The light-induced femtosecond dynamics of the sublattice magnetizations in the antiferromagnetically ordered phase of the semiconductor $alpha$-MnTe is investigated theoretically as function of an external driving field. The electromagnetic field is coupled to optical modes and the concomitant atomic displacements modulate the Heisenberg exchange couplings. We derive the equations of motion for the time-dependent sublattice magnetization in spin wave theory and analyze the contributions from the driven magnon modes. The antiferromagnetic order parameter exhibits coherent longitudinal oscillations determined by the external driving frequency which decay due to dephasing. Including a phenomenological dissipative term to mimic spin-lattice relaxation processes leads to relaxation back to thermal equilibrium. We provide approximate analytic solutions of the resulting differential equations which allow us to understand the effect of the driving light pulse on the amplitude, frequency, and lifetime of the coherent spin dynamics.

rate research

Read More

Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in $alpha$-RuCl$_3$ by combining time-domain terahertz spectroscopy under an external magnetic field and model Hamiltonian calculations. We observe two absorption peaks around 2.0 and 2.4 meV, which we attribute to zone-center spin waves. Using linear spin-wave theory with only nearest-neighbor terms of the exchange couplings, we calculate the antiferromagnetic resonance frequencies and reveal their dependence on an external field applied parallel to the nearest-neighbor Ru-Ru bonds. We find that the magnon behavior in an applied magnetic field can be understood only by including an off-diagonal $Gamma$ exchange term to the minimal Heisenberg-Kitaev model. Such an anisotropic exchange interaction that manifests itself as a result of strong spin-orbit coupling can naturally account for the observed mixing of the modes at higher fields strengths.
We use femtosecond electron diffraction to study ultrafast lattice dynamics in the highly correlated antiferromagnetic (AF) semiconductor NiO. Using the scattering vector (Q) dependence of Bragg diffraction, we introduce a Q-resolved effective lattice temperature, and identify a nonthermal lattice state with preferential displacement of O compared to Ni ions, which occurs within ~0.3 ps and persists for 25 ps. We associate this with transient changes to the AF exchange striction-induced lattice distortion, supported by the observation of a transient Q-asymmetry of Friedel pairs. Our observation highlights the role of spin-lattice coupling in routes towards ultrafast control of spin order.
121 - J. Schnack 2019
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.
121 - Z. Jin , C. Y. Meng , T. T. Liu 2021
The controllable magnetic skyrmion motion represents a highly concerned issue in preparing advanced skyrmion-based spintronic devices. Specifically, magnon-driven skyrmion motion can be easily accessible in both metallic and insulating magnets, and thus is highly preferred over electric current control further for the ultra-low energy consumption. In this work, we investigate extensively the dynamics of skyrmion motion driven by magnon in an antiferromagnet using the collective coordinate theory, focusing on the effect of magnon polarization. It is revealed that the skyrmion Hall motion driven by circularly polarized magnon becomes inevitable generally, consistent with earlier report. Furthermore, the elastic scattering theory and numerical results unveil the strong inter-dependence between the linearly polarized magnon and skyrmion motion, suggesting the complicated dependence of the skyrmion motion on the polarization nature of driving magnon. On the reversal, the scattering from the moving skyrmion may lead to decomposition of the linearly polarized magnon into two elliptically polarized magnon bands. Consequently, a net transverse force acting on skyrmion is generated owing to the broken mirror symmetry, which in turn drives a skyrmion Hall motion. The Hall motion can be completely suppressed only in some specific condition where the mirror symmetry is preserved. The present work unveils non-trivial skyrmion-magnon scattering behavior in antiferromagnets, advancing the antiferromagnetic spintronics and benefiting to high-performance devices.
Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang-Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin-correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا