No Arabic abstract
Using an equations-of-motion method based on analytical representations of spin-operator matrix elements in the XX chain, we obtain exact long-time dynamics of a composite system consisting of a spin-$S$ central spin and an XXZ chain, with the two interacting via inhomogeneous XXZ-type hyperfine coupling. Three types of initial bath states, namely, the Neel state, the ground state, and the spin coherent state are considered. We study the reduced dynamics of both the central spin and the XXZ bath. For the Neel state, we find that strong hyperfine couplings slow down the initial decay but facilitate the long-time relaxation of the antiferromagnetic order. Moreover, for fixed hyperfine coupling a larger $S$ leads to a faster initial decay of the antiferromagnetic order. We then study the purity dynamics of an $S=1$ central spin coupled to an XXZ chain prepared in the ground state. The time-dependent purity is found to reach the highest values at the critical point. We finally study the polarization dynamics of the central spin homogeneously coupled to a bath prepared in the spin coherent state. Under the resonant condition, the polarization dynamics for $S>frac{1}{2}$ exhibits collapse-revival behaviors with fine structures. However, the collapse-revival phenomena is found to be fragile with respect to the anisotropic intrabath coupling.
We discuss the semiclassical and classical character of the dynamics of a single spin 1/2 coupled to a bath of noninteracting spins 1/2. On the semiclassical level, we extend our previous approach presented in D. Stanek, C. Raas, and G. S. Uhrig, Phys. Rev. B 88, 155305 (2013) by the explicit consideration of the conservation of the total spin. On the classical level, we compare the results of the classical equations of motions in absence and presence of an external field to the full quantum result obtained by density-matrix renormalization (DMRG). We show that for large bath sizes and not too low magnetic field the classical dynamics, averaged over Gaussian distributed initial spin vectors, agrees quantitatively with the quantum-mechanical one. This observation paves the way for an efficient approach for certain parameter regimes.
We obtain analytically close forms of benchmark quantum dynamics of the collapse and revival (CR), reduced density matrix, Von Neumann entropy, and fidelity for the XXZ central spin problem. These quantities characterize the quantum decoherence and entanglement of the system with few to many bath spins, and for a short to infinitely long time evolution. For the homogeneous central spin problem, the effective magnetic field $B$, coupling constant $A$ and longitudinal interaction $Delta$ significantly influence the time scales of the quantum dynamics of the central spin and the bath, providing a tunable resource for quantum metrology. Under the resonance condition $B=Delta=A$, the location of the $m$-th revival peak in time reaches a simple relation $t_{r} simeqfrac{pi N}{A} m$ for a large $N$. For $Delta =0$, $Nto infty$ and a small polarization in the initial spin coherent state, our analytical result for the CR recovers the known expression found in the Jaynes-Cummings model, thus building up an exact dynamical connection between the central spin problems and the light-matter interacting systems in quantum nonlinear optics. In addition, the CR dynamics is robust to a moderate inhomogeneity of the coupling amplitudes, while disappearing at strong inhomogeneity.
Strong magnetic field gradients can produce a synthetic spin-orbit interaction that allows for high fidelity electrical control of single electron spins. We investigate how a field gradient impacts the spin relaxation time T_1 by measuring T_1 as a function of magnetic field B in silicon. The interplay of charge noise, magnetic field gradients, phonons, and conduction band valleys leads to a maximum relaxation time of 160 ms at low field, a strong spin-valley relaxation hotspot at intermediate fields, and a B^4 scaling at high fields. T_1 is found to decrease with lattice temperature T_lat as well as with added electrical noise. In comparison, samples without micromagnets have a significantly longer T_1. Optimization of the micromagnet design, combined with reductions in charge noise and electron temperature, may further extend T_1 in devices with large magnetic field gradients.
Using fast electron spin resonance spectroscopy of a single nitrogen-vacancy defect in diamond, we demonstrate real-time readout of the Overhauser field produced by its nuclear spin environment under ambient conditions. These measurements enable narrowing the Overhauser field distribution by post-selection, corresponding to a conditional preparation of the nuclear spin bath. Correlations of the Overhauser field fluctuations are quantitatively inferred by analysing the Allan deviation over consecutive measurements. This method allows to extract the dynamics of weakly coupled nuclear spins of the reservoir.
Few-magnon excitations in Heisenberg-like models play an important role in understanding magnetism and have long been studied by various approaches. However, the quantum dynamics of magnon excitations in a finite-size spin-$S$ $XXZ$ chain with single-ion anisotropy remains unsolved. Here, we exactly solve the two-magnon (three-magnon) problem in the spin-$S$ $XXZ$ chain by reducing the few-magnons to a fictitious single particle on a one-dimensional (two-dimensional) effective lattice. Such a mapping allows us to obtain both the static and dynamical properties of the model explicitly. The zero-energy-excitation states and various types of multimagnon bound states are manifested, with the latter being interpreted as edge states on the effective lattices. Moreover, we study the real-time multimagnon dynamics by simulating single-particle quantum walks on the effective lattices.