Do you want to publish a course? Click here

A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families

160   0   0.0 ( 0 )
 Added by Richard Wentworth
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we prove a singular version of the Donaldson-Uhlenbeck-Yau theorem over normal projective varieties and normal complex subvarieties of compact Kahler manifolds that are smooth outside a codimension three analytic subset. As a consequence, we deduce the polystability of (dual) tensor products of stable reflexive sheaves, and we give a new proof of the Bogomolov-Gieseker inequality over such spaces, along with a precise characterization of the case of equality. In addition, we improve several previously known algebro-geometric results on normalized tautological classes. We also study the limiting behavior of semistable bundles over a degenerating family of normal projective varieties. In the case of a family of stable bundles, we explain how the singular Hermitian-Yang-Mills connections obtained here fit into the degeneration picture. These can also be characterized from the algebro-geometric perspective. As an application, we apply the results to the degeneration of stable bundles through the deformation to projective cones, and we explain how our results are related to the Mehta-Ramanathan restriction theorem.



rate research

Read More

We construct a compactification $M^{mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $gamma colon M^{ss} to M^{mu ss}$, where $M^{ss}$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.
562 - Boris Pasquier 2008
We use the toric degeneration of Bott-Samelson varieties and the description of cohomolgy of line bundles on toric varieties to deduce vanishings results for the cohomology of lines bundles on Bott-Samelson varieties.
201 - D.Grigoriev , P.Milman 2009
{bf Construction.} For a dominating polynomial mapping {$F: K^nto K^l$} with an isolated critical value at 0 ($K$ an algebraically closed field of characteristic zero) we construct a closed {it bundle} $G_F subset T^{*}K^n $. We restrict $ G_F $ over the critical points $Sing(F)$ of $ F$ in $ F^{-1}(0)$ and partition $Sing(F)$ into {it quasistrata} of points with the fibers of $G_F$ of constant dimension. It turns out that T-W-a (Thom and Whitney-a) stratifications near $F^{-1}(0)$ exist iff the fibers of bundle $G_F$ are orthogonal to the tangent spaces at the smooth points of the quasistrata (e. g. when $ l=1$). Also, the latter are the orthogonal complements over an irreducible component $ S $ of a quasistratum only if $S $ is {bf universal} for the class of {T-W-a} stratifications, meaning that for any ${S_j}_j $ in the class, $ Sing (F) = cup_j S_j $, there is a component $S $ of an $ S_j $ with $Scap S$ being open and dense in both $S $ and $ S $. {bf Results.} We prove that T-W-a stratifications with only universal strata exist iff all fibers of $G_F$ are the orthogonal complements to the respective tangent spaces to the quasistrata, and then the partition of $Sing(F)$ by the latter yields the coarsest {it universal T-W-a stratification}. The key ingredient is our version of {bf Sard-type Theorem for singular spaces} in which a singular point is considered to be noncritical iff nonsingular points nearby are uniformly noncritical (e. g. for a dominating map $ F: X to Z $ meaning that the sum of the absolute values of the $ltimes l$ minors of the Jacobian matrix of $ F $, where $ l = dim (Z) $, not only does not vanish but, moreover, is separated from zero by a positive constant).
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the special fiber consists of multiple projective lines meeting in one point. On such models we investigate vector bundles whose generic fiber is a syzygy bundle and which become trivial when restricted to each projective line in the special fiber. Hence these syzygy bundles have strongly semistable reduction. This investigation is motivated by the fundamental open problem in $p$-adic Simpson theory to determine the category of Higgs bundles corresponding to continuous representations of the etale fundamental group of a curve. Faltings $p$-adic Simpson correspondence and work of Deninger and the second author shows that bundles with Higgs field zero and potentially strongly semistable reduction fall into this category. Hence the results in the present paper determine a class of syzygy bundles on plane curves giving rise to a $p$-adic local system. We apply our methods to a concrete example on the Fermat curve suggested by Brenner and prove that this bundle has potentially strongly semistable reduction.
368 - Rong Du , Xinyi Fang , Yun Gao 2019
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an algebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا