Do you want to publish a course? Click here

Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces

257   0   0.0 ( 0 )
 Added by Ugo Bruzzo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a compactification $M^{mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $gamma colon M^{ss} to M^{mu ss}$, where $M^{ss}$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.



rate research

Read More

We study the moduli space of framed flags of sheaves on the projective plane via an adaptation of the ADHM construction of framed sheaves. In particular, we prove that, for certain values of the topological invariants, the moduli space of framed flags of sheaves is an irreducible, nonsingular variety carrying a holomorphic pre-symplectic form.
We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definition using weighted Euler characteristics. We prove this for deg $K_S<0$ here, and it is proved for $S$ a K3 surface in cite{MT}. For K3 surfaces we calculate the invariants in terms of modular forms which generalise and prove conjectures of Vafa and Witten.
In this paper, we prove a singular version of the Donaldson-Uhlenbeck-Yau theorem over normal projective varieties and normal complex subvarieties of compact Kahler manifolds that are smooth outside a codimension three analytic subset. As a consequence, we deduce the polystability of (dual) tensor products of stable reflexive sheaves, and we give a new proof of the Bogomolov-Gieseker inequality over such spaces, along with a precise characterization of the case of equality. In addition, we improve several previously known algebro-geometric results on normalized tautological classes. We also study the limiting behavior of semistable bundles over a degenerating family of normal projective varieties. In the case of a family of stable bundles, we explain how the singular Hermitian-Yang-Mills connections obtained here fit into the degeneration picture. These can also be characterized from the algebro-geometric perspective. As an application, we apply the results to the degeneration of stable bundles through the deformation to projective cones, and we explain how our results are related to the Mehta-Ramanathan restriction theorem.
183 - R. Pandharipande 2008
The conjectural equivalence of curve counting on Calabi-Yau 3-folds via stable maps and stable pairs is discussed. By considering Calabi-Yau 3-folds with K3 fibrations, the correspondence naturally connects curve and sheaf counting on K3 surfaces. New results and conjectures (with D. Maulik) about descendent integration on K3 surfaces are announced. The recent proof of the Yau-Zaslow conjecture is surveyed. The paper accompanies my lecture at the Clay research conference in Cambridge, MA in May 2008.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with $c_2(E)le4$, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space ${mathcal T}(d)$ of stable sheaves on $mathbb{P}^3$ with Hilbert polynomial $P(t)=dcdot t$, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity $d$; we describe all the irreducible components of ${mathcal T}(d)$ for $dle4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا