No Arabic abstract
While the study of graphs has been very popular, simplicial complexes are relatively new in the network science community. Despite being are a source of rich information, graphs are limited to pairwise interactions. However, several real world networks such as social networks, neuronal networks etc. involve simultaneous interactions between more than two nodes. Simplicial complexes provide a powerful mathematical way to model such interactions. Now, the spectrum of the graph Laplacian is known to be indicative of community structure, with nonzero eigenvectors encoding the identity of communities. Here, we propose that the spectrum of the Hodge Laplacian, a higher-order Laplacian applied to simplicial complexes, encodes simplicial communities. We formulate an algorithm to extract simplicial communities (of arbitrary dimension). We apply this algorithm on simplicial complex benchmarks and on real data including social networks and language-networks, where higher-order relationships are intrinsic. Additionally, datasets for simplicial complexes are scarce. Hence, we introduce a method of optimally generating a simplicial complex from its network backbone through estimating the textit{true} higher-order relationships when its community structure is known. We do so by using the adjusted mutual information to identify the configuration that best matches the expected data partition. Lastly, we demonstrate an example of persistent simplicial communities inspired by the field of persistence homology.
We describe an algorithm for simulating ultrasound propagation in random one-dimensional media, mimicking different microstructures by choosing physical properties such as domain sizes and mass densities from probability distributions. By combining a detrended fluctuation analysis (DFA) of the simulated ultrasound signals with tools from the pattern-recognition literature, we build a Gaussian classifier which is able to associate each ultrasound signal with its corresponding microstructure with a very high success rate. Furthermore, we also show that DFA data can be used to train a multilayer perceptron which estimates numerical values of physical properties associated with distinct microstructures.
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
We review a collection of models of random simplicial complexes together with some of the most exciting phenomena related to them. We do not attempt to cover all existing models, but try to focus on those for which many important results have been recently established rigorously in mathematics, especially in the context of algebraic topology. In application to real-world systems, the reviewed models are typically used as null models, so that we take a statistical stance, emphasizing, where applicable, the entropic properties of the reviewed models. We also review a collection of phenomena and features observed in these models, and split the presented results into two classes: phase transitions and distributional limits. We conclude with an outline of interesting future research directions.
We provide a short introduction to the field of topological data analysis and discuss its possible relevance for the study of complex systems. Topological data analysis provides a set of tools to characterise the shape of data, in terms of the presence of holes or cavities between the points. The methods, based on notion of simplicial complexes, generalise standard network tools by naturally allowing for many-body interactions and providing results robust under continuous deformations of the data. We present strengths and weaknesses of current methods, as well as a range of empirical studies relevant to the field of complex systems, before identifying future methodological challenges to help understand the emergence of collective phenomena.
Measurements are inseparable from inference, where the estimation of signals of interest from other observations is called an indirect measurement. While a variety of measurement limits have been defined by the physical constraint on each setup, the fundamental limit of an indirect measurement is essentially the limit of inference. Here, we propose the concept of statistical limits on indirect measurement: the bounds of distinction between signals and noise and between a signal and another signal. By developing the asymptotic theory of Bayesian regression, we investigate the phenomenology of a typical indirect measurement and demonstrate the existence of these limits. Based on the connection between inference and statistical physics, we also provide a unified interpretation in which these limits emerge from phase transitions of inference. Our results could pave the way for novel experimental design, enabling assess to the required quality of observations according to the assumed ground truth before the concerned indirect measurement is actually performed.