Do you want to publish a course? Click here

Random Simplicial Complexes: Models and Phenomena

73   0   0.0 ( 0 )
 Added by Dmitri Krioukov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review a collection of models of random simplicial complexes together with some of the most exciting phenomena related to them. We do not attempt to cover all existing models, but try to focus on those for which many important results have been recently established rigorously in mathematics, especially in the context of algebraic topology. In application to real-world systems, the reviewed models are typically used as null models, so that we take a statistical stance, emphasizing, where applicable, the entropic properties of the reviewed models. We also review a collection of phenomena and features observed in these models, and split the presented results into two classes: phase transitions and distributional limits. We conclude with an outline of interesting future research directions.



rate research

Read More

182 - Anais Vergne 2013
Random abstract simplicial complex representation provides a mathematical description of wireless networks and their topology. In order to reduce the energy consumption in this type of network, we intend to reduce the number of network nodes without modifying neither the connectivity nor the coverage of the network. In this paper, we present a reduction algorithm that lower the number of points of an abstract simplicial complex in an optimal order while maintaining its topology. Then, we study the complexity of such an algorithm for a network simulated by a binomial point process and represented by a Vietoris-Rips complex.
There have been several recent articles studying homology of various types of random simplicial complexes. Several theorems have concerned thresholds for vanishing of homology, and in some cases expectations of the Betti numbers. However little seems known so far about limiting distributions of random Betti numbers. In this article we establish Poisson and normal approximation theorems for Betti numbers of different kinds of random simplicial complex: ErdH{o}s-Renyi random clique complexes, random Vietoris-Rips complexes, and random v{C}ech complexes. These results may be of practical interest in topological data analysis.
We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
We correct the proofs of the main theorems in our paper Limit theorems for Betti numbers of random simplicial complexes.
220 - A. Costa , M. Farber 2015
In this paper we develop further the multi-parameter model of random simplicial complexes. Firstly, we give an intrinsic characterisation of the multi-parameter probability measure. Secondly, we show that in multi-parameter random simplicial complexes the links of simplexes and their intersections are also multi-parameter random simplicial complexes. Thirdly, we find conditions under which a multi-parameter random simplicial complex is connected and simply connected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا