Do you want to publish a course? Click here

Limitations of Local Quantum Algorithms on Maximum Cuts of Sparse Hypergraphs and Beyond

81   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we study the limitations of the Quantum Approximate Optimization Algorithm (QAOA) through the lens of statistical physics and show that there exists $epsilon > 0$, such that $epsilonlog(n)$ depth QAOA cannot arbitrarily-well approximate the ground state energy of random diluted $k$-spin glasses when $kgeq4$ is even. This is equivalent to the weak approximation resistance of logarithmic depth QAOA to the kxors problem. We further extend the limitation to other boolean constraint satisfaction problems as long as the problem satisfies a combinatorial property called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability, 47(3), 2019]. As a consequence of our techniques, we confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018] asserting that the landscape independence of QAOA extends to logarithmic depth---in other words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs almost equally well on almost all instances. Our results provide a new way to study the power and limit of QAOA through statistical physics methods and combinatorial properties.



rate research

Read More

225 - Boaz Barak , Kunal Marwaha 2021
We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of classical algorithms. (1) We prove that every (quantum or classical) one-local algorithm achieves on $D$-regular graphs of girth $> 5$ a maximum cut of at most $1/2 + C/sqrt{D}$ for $C=1/sqrt{2} approx 0.7071$. This is the first such result showing that one-local algorithms achieve a value bounded away from the true optimum for random graphs, which is $1/2 + P_*/sqrt{D} + o(1/sqrt{D})$ for $P_* approx 0.7632$. (2) We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrt{D} - O(1/sqrt{k})$ for $D$-regular graphs of girth $> 2k+1$, where $C = 2/pi approx 0.6366$. This is an algorithmic version of the existential bound of Lyons and is related to the algorithm of Aizenman, Lebowitz, and Ruelle (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-loc
88 - Harry Buhrman 2003
We define and study the complexity of robust polynomials for Boolean functions and the related fault-tolerant quantum decision trees, where input bits are perturbed by noise. We compare several different possible definitions. Our main results are * For every n-bit Boolean function f there is an n-variate polynomial p of degree O(n) that robustly approximates it, in the sense that p(x) remains close to f(x) if we slightly vary each of the n inputs of the polynomial. * There is an O(n)-query quantum algorithm that robustly recovers n noisy input bits. Hence every n-bit function can be quantum computed with O(n) queries in the presence of noise. This contrasts with the classical model of Feige et al., where functions such as parity need Theta(n*log n) queries. We give several extensions and applications of these results.
$ ewcommand{eps}{varepsilon} $In learning theory, the VC dimension of a concept class $C$ is the most common way to measure its richness. In the PAC model $$ ThetaBig(frac{d}{eps} + frac{log(1/delta)}{eps}Big) $$ examples are necessary and sufficient for a learner to output, with probability $1-delta$, a hypothesis $h$ that is $eps$-close to the target concept $c$. In the related agnostic model, where the samples need not come from a $cin C$, we know that $$ ThetaBig(frac{d}{eps^2} + frac{log(1/delta)}{eps^2}Big) $$ examples are necessary and sufficient to output an hypothesis $hin C$ whose error is at most $eps$ worse than the best concept in $C$. Here we analyze quantum sample complexity, where each example is a coherent quantum state. This model was introduced by Bshouty and Jackson, who showed that quantum examples are more powerful than classical examples in some fixed-distribution settings. However, Atici and Servedio, improved by Zhang, showed that in the PAC setting, quantum examples cannot be much more powerful: the required number of quantum examples is $$ OmegaBig(frac{d^{1-eta}}{eps} + d + frac{log(1/delta)}{eps}Big)mbox{ for all }eta> 0. $$ Our main result is that quantum and classical sample complexity are in fact equal up to constant factors in both the PAC and agnostic models. We give two approaches. The first is a fairly simple information-theoretic argument that yields the above two classical bounds and yields the same bounds for quantum sample complexity up to a $log(d/eps)$ factor. We then give a second approach that avoids the log-factor loss, based on analyzing the behavior of the Pretty Good Measurement on the quantum state identification problems that correspond to learning. This shows classical and quantum sample complexity are equal up to constant factors.
304 - Urmila Mahadev 2014
We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using postselection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We give optimal (up to constant factors) quantum algorithms with postselection for the Majority function, slightly improving upon an earlier algorithm of Aaronson. Finally we show how Newmans classic theorem about low-degree rational approximation of the absolute-value function follows from these algorithms.
We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an $n$-qubit product state $|vrangle$ with mean energy $e_0=langle v|H|vrangle$ and variance $mathrm{Var}=langle v|(H-e_0)^2|vrangle$, and outputs a state with an energy that is lower than $e_0$ by an amount proportional to $mathrm{Var}^2/n$. In a typical case, we have $mathrm{Var}=Omega(n)$ and the energy improvement is proportional to the number of edges in the graph. When applied to an initial random product state, we recover and generalize the performance guarantees of known algorithms for bounded-occurrence classical constraint satisfaction problems. We extend our results to $k$-local Hamiltonians and entangled initial states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا