No Arabic abstract
We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an $n$-qubit product state $|vrangle$ with mean energy $e_0=langle v|H|vrangle$ and variance $mathrm{Var}=langle v|(H-e_0)^2|vrangle$, and outputs a state with an energy that is lower than $e_0$ by an amount proportional to $mathrm{Var}^2/n$. In a typical case, we have $mathrm{Var}=Omega(n)$ and the energy improvement is proportional to the number of edges in the graph. When applied to an initial random product state, we recover and generalize the performance guarantees of known algorithms for bounded-occurrence classical constraint satisfaction problems. We extend our results to $k$-local Hamiltonians and entangled initial states.
We study quantum algorithms for testing bipartiteness and expansion of bounded-degree graphs. We give quantum algorithms that solve these problems in time O(N^(1/3)), beating the Omega(sqrt(N)) classical lower bound. For testing expansion, we also prove an Omega(N^(1/4)) quantum query lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum algorithms follow from a combination of classical property testing techniques due to Goldreich and Ron, derandomization, and the quantum algorithm for element distinctness. The quantum lower bound is obtained by the polynomial method, using novel algebraic techniques and combinatorial analysis to accommodate the graph structure.
In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization. The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.
An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the k-distinctness function on inputs of size N. While the case of k=2 (also called Element Distinctness) is well-understood, there is a polynomial gap between the known upper and lower bounds for all constants k>2. Specifically, the best known upper bound is O(N^{(3/4)-1/(2^{k+2}-4)}) (Belovs, FOCS 2012), while the best known lower bound for k >= 2 is Omega(N^{2/3} + N^{(3/4)-1/(2k)}) (Aaronson and Shi, J.~ACM 2004; Bun, Kothari, and Thaler, STOC 2018). For any constant k >= 4, we improve the lower bound to Omega(N^{(3/4)-1/(4k)}). This yields, for example, the first proof that 4-distinctness is strictly harder than Element Distinctness. Our lower bound applies more generally to approximate degree. As a secondary result, we give a simple construction of an approximating polynomial of degree O(N^{3/4}) that applies whenever k <= polylog(N).
Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications, such as approximating the permanent, and pre-conditioning linear systems to make them more numerically stable. We study the power and limitations of quantum algorithms for these problems. We provide quantum implementations of two classical (in both senses of the word) methods: Sinkhorns algorithm for matrix scaling and Osbornes algorithm for matrix balancing. Using amplitude estimation as our main tool, our quantum implementations both run in time $tilde O(sqrt{mn}/varepsilon^4)$ for scaling or balancing an $n times n$ matrix (given by an oracle) with $m$ non-zero entries to within $ell_1$-error $varepsilon$. Their classical analogs use time $tilde O(m/varepsilon^2)$, and every classical algorithm for scaling or balancing with small constant $varepsilon$ requires $Omega(m)$ queries to the entries of the input matrix. We thus achieve a polynomial speed-up in terms of $n$, at the expense of a worse polynomial dependence on the obtained $ell_1$-error $varepsilon$. We emphasize that even for constant $varepsilon$ these problems are already non-trivial (and relevant in applications). Along the way, we extend the classical analysis of Sinkhorns and Osbornes algorithm to allow for errors in the computation of marginals. We also adapt an improved analysis of Sinkhorns algorithm for entrywise-positive matrices to the $ell_1$-setting, leading to an $tilde O(n^{1.5}/varepsilon^3)$-time quantum algorithm for $varepsilon$-$ell_1$-scaling in this case. We also prove a lower bound, showing that our quantum algorithm for matrix scaling is essentially optimal for constant $varepsilon$: every quantum algorithm for matrix scaling that achieves a constant $ell_1$-error with respect to uniform marginals needs to make at least $Omega(sqrt{mn})$ queries.
We consider some classical and quantum approximate optimization algorithms with bounded depth. First, we define a class of local classical optimization algorithms and show that a single step version of these algorithms can achieve the same performance as the single step QAOA on MAX-3-LIN-2. Second, we show that this class of classical algorithms generalizes a class previously considered in the literature, and also that a single step of the classical algorithm will outperform the single-step QAOA on all triangle-free MAX-CUT instances. In fact, for all but $4$ choices of degree, existing single-step classical algorithms already outperform the QAOA on these graphs, while for the remaining $4$ choices we show that the generalization here outperforms it. Finally, we consider the QAOA and provide strong evidence that, for any fixed number of steps, its performance on MAX-3-LIN-2 on bounded degree graphs cannot achieve the same scaling as can be done by a class of global classical algorithms. These results suggest that such local classical algorithms are likely to be at least as promising as the QAOA for approximate optimization.