Do you want to publish a course? Click here

Flight mask designs of the Roman Space Telescope Coronagraph Instrument

117   0   0.0 ( 0 )
 Added by A J Eldorado Riggs
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the past two decades, thousands of confirmed exoplanets have been detected; the next major challenge is to characterize these other worlds and their stellar systems. Much information on the composition and formation of exoplanets and circumstellar debris disks can only be achieved via direct imaging. Direct imaging is challenging because of the small angular separations ($<1$ arcsec) and high star-to-planet flux ratios (${sim}10^{9}$ for a Jupiter analog or ${sim}10^{10}$ for an Earth analog in the visible). Atmospheric turbulence prohibits reaching such high flux ratios on the ground, so observations must be made above the Earths atmosphere. The Nancy Grace Roman Space Telescope (Roman), set to launch in the mid-2020s, will be the first space-based observatory to demonstrate high-contrast imaging with active wavefront control using its Coronagraph Instrument. The instruments main purpose is to mature the various technologies needed for a future flagship mission to image and characterize Earth-like exoplanets. These technologies include two high-actuator-count deformable mirrors, photon-counting detectors, two complementary wavefront sensing and control loops, and two different coronagraph types. In this paper, we describe the complete set of flight coronagraph mask designs and their intended combinations in the Roman Coronagraph Instrument. There are three types of mask configurations included: a primary one designed to meet the instruments top-level requirement, three that are supported on a best-effort basis, and several unsupported ones contributed by the NASA Exoplanet Exploration Program. The unsupported mask configurations could be commissioned and used if the instrument is approved for operations after its initial technology demonstration phase.



rate research

Read More

The Coronagraph Instrument (CGI) on the Nancy Grace Roman Space Telescope will demonstrate the high-contrast technology necessary for visible-light exoplanet imaging and spectroscopy from space via direct imaging of Jupiter-size planets and debris disks. This in-space experience is a critical step toward future, larger missions targeted at direct imaging of Earth-like planets in the habitable zones of nearby stars. This paper presents an overview of the current instrument design and requirements, highlighting the critical hardware, algorithms, and operations being demonstrated. We also describe several exoplanet and circumstellar disk science cases enabled by these capabilities. A competitively selected Community Participation Program team will be an integral part of the technology demonstration and could perform additional CGI observations beyond the initial tech demo if the instrument performance warrants it.
273 - B. Mennesson 2020
This document summarizes how far the Nancy Grace Roman Space Telescope Coronagraph Instrument (Roman CGI) will go toward demonstrating high-contrast imaging and spectroscopic requirements for potential future exoplanet direct imaging missions, illustrated by the HabEx and LUVOIR concepts. The assessment is made for two levels of assumed CGI performance: (i) current best estimate (CBE) as of August 2020, based on laboratory results and realistic end-to-end simulations with JPL-standard Model Uncertainty Factors (MUFs); (ii) CGI design specifications inherited from Phase B requirements. We find that the predicted performance (CBE) of many CGI subsystems compares favorably with the needs of future missions, despite providing more modest point source detection limits than future missions. This is essentially due to the challenging pupil of the Roman Space Telescope; this pupil pushes the coronagraph masks sensitivities to misalignments to be commensurate with future missions. In particular, CGI will demonstrate active low-order wavefront control and photon counting capabilities at levels of performance either higher than, or comparable to, the needs of future missions.
The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) will be capable of characterizing exoplanets in reflected light and will demonstrate space technologies essential for future missions to take spectra of Earthlike exoplanets. As the mission and instrument move into the final stages of design, simulation tools spanning from depth of search calculators to detailed diffraction models have been created by a variety of teams. We summarize these efforts, with a particular focus on publicly available datasets and software tools. These include speckle and point-spread-function models, signal-to-noise calculators, and science product simulations (e.g. predicted observations of debris disks and exoplanet spectra). This review is intended to serve as a reference to facilitate engagement with the technical and science capabilities of the CGI instrument.
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) is a high-contrast imager and integral field spectrograph that will enable the study of exoplanets and circumstellar disks at visible wavelengths. Ground-based high-contrast instrumentation has fundamentally limited performance at small working angles, even under optimistic assumptions for 30m-class telescopes. There is a strong scientific driver for better performance, particularly at visible wavelengths. Future flagship mission concepts aim to image Earth analogues with visible light flux ratios of more than 10^10. CGI is a critical intermediate step toward that goal, with a predicted 10^8-9 flux ratio capability in the visible. CGI achieves this through improvements over current ground and space systems in several areas: (i) Hardware: space-qualified (TRL9) deformable mirrors, detectors, and coronagraphs, (ii) Algorithms: wavefront sensing and control; post-processing of integral field spectrograph, polarimetric, and extended object data, and (iii) Validation of telescope and instrument models at high accuracy and precision. This white paper, submitted to the 2018 NAS Exoplanet Science Strategy call, describes the status of key CGI technologies and presents ways in which performance is likely to evolve as the CGI design matures.
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESAs Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا